The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

1861-1880hit(3945hit)

  • An Estimation Method of Parameters for Closed-box Loudspeaker System

    Rika NAKAO  Yoshinobu KAJIKAWA  Yasuo NOMURA  

     
    PAPER-Engineering Acoustics

      Vol:
    E91-A No:10
      Page(s):
    3006-3013

    In this paper, we propose a method that uses Simulated Annealing (SA) to estimate the linear and nonlinear parameters of a closed-box loudspeaker system for implementing effective Mirror filters. The nonlinear parameters determined by W. Klippel's method are sometimes inaccurate and imaginary. In contrast, the proposed method can estimate the parameters with satisfactory accuracy due to its use of SA; the resulting impedance and displacement characteristics match those of an actual equivalent loudspeaker. A Mirror filter designed around these parameters can well compensate the nonlinear distortions of the loudspeaker system. Experiments demonstrate that the method can reduce the levels of nonlinear distortion by 5 dB to 20 dB compared to the before compensation condition.

  • Dependability Improvement for PPM Compressed Data by Using Compression Pattern Matching

    Masato KITAKAMI  Toshihiro OKURA  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:10
      Page(s):
    2435-2439

    Data compression is popularly applied to computer systems and communication systems in order to reduce storage size and communication time, respectively. Since large data are used frequently, string matching for such data takes a long time. If the data are compressed, the time gets much longer because decompression is necessary. Long string matching time makes computer virus scan time longer and gives serious influence to the security of data. From this, CPM (Compression Pattern Matching) methods for several compression methods have been proposed. This paper proposes CPM method for PPM which achieves fast virus scan and improves dependability of the compressed data, where PPM is based on a Markov model, uses a context information, and achieves a better compression ratio than BW transform and Ziv-Lempel coding. The proposed method encodes the context information, which is generated in the compression process, and appends the encoded data at the beginning of the compressed data as a header. The proposed method uses only the header information. Computer simulation says that augmentation of the compression ratio is less than 5 percent if the order of the PPM is less than 5 and the source file size is more than 1 M bytes, where order is the maximum length of the context used in PPM compression. String matching time is independent of the source file size and is very short, less than 0.3 micro seconds in the PC used for the simulation.

  • Achievements and Challenges in the Design and Production of High Quality Optical Coatings

    Alexander TIKHONRAVOV  Michael TRUBETSKOV  Ichiro KASAHARA  

     
    INVITED PAPER

      Vol:
    E91-C No:10
      Page(s):
    1622-1629

    A new paradigm in the design of optical coatings connected with an outstanding computational efficiency of modern design techniques is discussed. Several other topics including pre-production error analysis, monitoring of coating production, and computational manufacturing of optical coatings are considered.

  • Inter-Domain Redundancy Path Computation Methods Based on PCE

    Rie HAYASHI  Eiji OKI  Kohei SHIOMOTO  

     
    PAPER-Network

      Vol:
    E91-B No:10
      Page(s):
    3185-3193

    This paper evaluates three inter-domain redundancy path computation methods based on PCE (Path Computation Element). Some inter-domain paths carry traffic that must be assured of high quality and high reliability transfer such as telephony over IP and premium virtual private networks (VPNs). It is, therefore, important to set inter-domain redundancy paths, i.e. primary and secondary paths. The first scheme utilizes an existing protocol and the basic PCE implementation. It does not need any extension or modification. In the second scheme, PCEs make a virtual shortest path tree (VSPT) considering the candidates of primary paths that have corresponding secondary paths. The goal is to reduce blocking probability; corresponding secondary paths may be found more often after a primary path is decided; no protocol extension is necessary. In the third scheme, PCEs make a VSPT considering all candidates of primary and secondary paths. Blocking probability is further decreased since all possible candidates are located, and the sum of primary and secondary path cost is reduced by choosing the pair with minimum cost among all path pairs. Numerical evaluations show that the second and third schemes offer only a few percent reduction in blocking probability and path pair total cost, while the overheads imposed by protocol revision and increase of the amount of calculation and information to be exchanged are large. This suggests that the first scheme, the most basic and simple one, is the best choice.

  • A Multi-Code Compression Scheme for Test Time Reduction of System-on-Chip Designs

    Hong-Ming SHIEH  Jin-Fu LI  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:10
      Page(s):
    2428-2434

    With the nano-scale technology, an system-on-chip (SOC) design may consist of many reusable cores from multiple sources. This causes that the complexity of SOC testing is much higher than that of conventional VLSI chip testing. One of the SOC test challenges is the test data reduction. This paper presents a multi-code compression (MCC) technique to reduce the volume of test data and the test application time. A multi-code decompressor for recovering the compressed test data is also proposed. Experimental results show that the MCC scheme can achieve higher compression ratio than single-code compression schemes. The area cost of the proposed multi-code decompressor is small--only about 3498 µm2 based on TSMC 0.18 µm standard cell technology.

  • Arithmetic Circuit Verification Based on Symbolic Computer Algebra

    Yuki WATANABE  Naofumi HOMMA  Takafumi AOKI  Tatsuo HIGUCHI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:10
      Page(s):
    3038-3046

    This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Grobner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits.

  • Shape-Direction-Adaptive Lifting-Based Discrete Wavelet Transform for Arbitrarily Shaped Segments in Image Compression

    Sheng-Fuu LIN  Chien-Kun SU  

     
    PAPER-Pattern Recognition

      Vol:
    E91-D No:10
      Page(s):
    2467-2476

    In this paper, a new lifting-based shape-direction-adaptive discrete wavelet transform (SDA-DWT) which can be used for arbitrarily shaped segments is proposed. The SDA-DWT contains three major techniques: the lifting-based DWT, the adaptive directional technique, and the concept of object-based compression in MPEG-4. With SDA-DWT, the number of transformed coefficients is equal to the number of pixels in the arbitrarily shaped segment image, and the spatial correlation across subbands is well preserved. SDA-DWT also can locally adapt its filtering directions according to the texture orientations to improve energy compaction for images containing non-horizontal or non-vertical edge textures. SDA-DWT can be applied to any application that is wavelet based and the lifting technique provides much flexibility for hardware implementation. Experimental results show that, for still object images with rich orientation textures, SDA-DWT outperforms SA-DWT up to 5.88 dB in PSNR under 2.15-bpp (bit / object pixel) condition, and reduces the bit-budget up to 28.5% for lossless compression. SDA-DWT also outperforms DA-DWT up to 5.44 dB in PSNR under 3.28-bpp condition, and reduces the bit-budget up to 14.0%.

  • Properties of a Convoluted-Time and Code Division Multiple Access Communication Systems Based upon Complete Complementary Codes

    Tetsuya KOJIMA  Masahiro AONO  

     
    LETTER-Spectrum Technologies

      Vol:
    E91-A No:10
      Page(s):
    2881-2884

    A convoluted-time and code division multiple access (CT-CDMA) communication system based on complete complementary codes has been proposed. In this letter, the properties of this communication system are discussed and compared with those of the conventional CDMA systems using complete complementary codes.

  • JPEG Compatible Raw Image Coding Based on Polynomial Tone Mapping Model

    Masahiro OKUDA  Nicola ADAMI  

     
    PAPER-Image Coding

      Vol:
    E91-A No:10
      Page(s):
    2928-2933

    In this paper, we propose a coding method for camera raw images with high dynamic ranges. Our encoder has two layers. In the first layer, 24 bit low dynamic range image is encoded by a conventional codec, and then the residual image that represents the difference between the raw image and its approximation is encoded in the second layer. The approximation is derived by a polynomial fitting. The main advantage of this approach is that applying the polynomial model reduces the correlation between the raw and 24 bit images, which increases coding efficiency. Experiments shows compression efficiency is significantly improved by taking an inverse tone mapping into account.

  • An Image Completion Algorithm Using Occlusion-Free Images from Internet Photo Sharing Sites

    Hanieh AMIRSHAHI  Satoshi KONDO  Koichi ITO  Takafumi AOKI  

     
    PAPER-Image Processing

      Vol:
    E91-A No:10
      Page(s):
    2918-2927

    In this paper, we propose an image completion algorithm which takes advantage of the countless number of images available on Internet photo sharing sites to replace occlusions in an input image. The algorithm 1) automatically selects the most suitable images from a database of downloaded images and 2) seamlessly completes the input image using the selected images with minimal user intervention. Experimental results on input images captured at various locations and scene conditions demonstrate the effectiveness of the proposed technique in seamlessly reconstructing user-defined occlusions.

  • A More Compact Representation of XTR Cryptosystem

    Masaaki SHIRASE  Dong-Guk HAN  Yasushi HIBINO  Howon KIM  Tsuyoshi TAKAGI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E91-A No:10
      Page(s):
    2843-2850

    XTR is one of the most efficient public-key cryptosystems that allow us to compress the communication bandwidth of their ciphertext. The compact representation can be achieved by deploying a subgroup Fq2 of extension field Fq6, so that the compression ratio of XTR cryptosystem is 1/3. On the other hand, Dijk et al. proposed an efficient public-key cryptosystem using a torus over Fq30 whose compression ratio is 4/15. It is an open problem to construct an efficient public-key cryptosystem whose compression ratio is smaller than 4/15. In this paper we propose a new variant of XTR cryptosystem over finite fields with characteristic three whose compression ratio is 1/6. The key observation is that there exists a trace map from Fq6 to Fq in the case of characteristic three. Moreover, the cost of compression and decompression algorithm requires only about 1% overhead compared with the original XTR cryptosystem. Therefore, the proposed variant of XTR cryptosystem is one of the fastest public-key cryptosystems with the smallest compression ratio.

  • Compression Functions Suitable for the Multi-Property-Preserving Transform

    Hidenori KUWAKADO  Masakatu MORII  

     
    PAPER-Cryptography and Information Security

      Vol:
    E91-A No:10
      Page(s):
    2851-2859

    Since Bellare and Ristenpart showed a multi-property preserving domain extension transform, the problem of the construction for multi-property hash functions has been reduced to that of the construction for multi-property compression functions. However, the Davies-Meyer compression function that is commonly used for standard hash functions is not a multi-property compression function. That is, in the ideal cipher model, the Davies-Meyer compression function is collision resistant, but it is not indifferentiable from a random oracle. In this paper, we show that the compression function proposed by Lai and Massey is a multi-property compression function. In addition, we show that the simplified version of the Lai-Massey compression function is also a multi-property compression function. The use of these compression functions enables us to construct multi-property hash functions by the multi-property preserving domain extension transform.

  • Sparse and Passive Reduced-Order Interconnect Modeling by Eigenspace Method

    Yuichi TANJI  

     
    PAPER-Analysis, Modelng and Simulation

      Vol:
    E91-A No:9
      Page(s):
    2419-2425

    The passive and sparse reduced-order modeling of a RLC network is presented, where eigenvalues and eigenvectors of the original network are used, and thus the obtained macromodel is more accurate than that provided by the Krylov subspace methods or TBR procedures for a class of circuits. Furthermore, the proposed method is applied to low pass filtering of a reduced-order model produced by these methods without breaking the passivity condition. Therefore, the proposed eigenspace method is not only a reduced-order macromodeling method, but also is embedded in other methods enhancing their performances.

  • Distributed Computing Software Building-Blocks for Ubiquitous Computing Societies

    K.H. (Kane) KIM  

     
    INVITED PAPER

      Vol:
    E91-D No:9
      Page(s):
    2233-2242

    The steady approach of advanced nations toward realization of ubiquitous computing societies has given birth to rapidly growing demands for new-generation distributed computing (DC) applications. Consequently, economic and reliable construction of new-generation DC applications is currently a major issue faced by the software technology research community. What is needed is a new-generation DC software engineering technology which is at least multiple times more effective in constructing new-generation DC applications than the currently practiced technologies are. In particular, this author believes that a new-generation building-block (BB), which is much more advanced than the current-generation DC object that is a small extension of the object model embedded in languages C++, Java, and C#, is needed. Such a BB should enable systematic and economic construction of DC applications that are capable of taking critical actions with 100-microsecond-level or even 10-microsecond-level timing accuracy, fault tolerance, and security enforcement while being easily expandable and taking advantage of all sorts of network connectivity. Some directions considered worth pursuing for finding such BBs are discussed.

  • Wide Dynamic Range Image Sensor with Polygonal-Line I/O Characteristic Adapted to Brightness Distribution of Objects

    Satoko KAGAMI  Fumitsugu SUZUKI  Takayuki HAMAMOTO  

     
    PAPER

      Vol:
    E91-C No:9
      Page(s):
    1402-1408

    We propose a CMOS image sensor that realizes wide dynamic range imaging and nonlinear representation of I/O characteristics. The proposed image sensor controls the integration time for each pixel based on the brightness distribution of objects. The histogram at the end of the integration is estimated from the early intermediate photodiode values that are read out to an external circuit. Using the estimated histogram, the imaging parameters, which control the integration time pixel-by-pixel, are optimized in the external circuit. According to the imaging parameters, the intermediate photodiode value is compared with the threshold and reset to the starting value depending on the comparison result. These processes repeat several times. At the end of the integration, the photodiode value is reconstructed by using the imaging parameters. Then, wide dynamic range images with adapted I/O characteristics are obtained. We have fabricated a prototype with a size of 6464 pixels using a 0.35-µm 2-poly 4-metal CMOS process. In this paper, we explain the principle of the proposed sensor and discuss the system architecture and its operation. The experimental results obtained using the prototype are also presented, and we verify its effectiveness.

  • Ultra Dependable Processor

    Shuichi SAKAI  Masahiro GOSHIMA  Hidetsugu IRIE  

     
    INVITED PAPER

      Vol:
    E91-C No:9
      Page(s):
    1386-1393

    This paper presents the processor architecture which provides much higher level dependability than the current ones. The features of it are: (1) fault tolerance and secure processing are integrated into a modern superscalar VLSI processor; (2) light-weight effective soft-error tolerant mechanisms are proposed and evaluated; (3) timing errors on random logic and registers are prevented by low-overhead mechanisms; (4) program behavior is hidden from the outer world by proposed address translation methods; (5) information leakage can be avoided by attaching policy tags for all data and monitoring them for each instruction execution; (6) injection attacks are avoided with much higher accuracy than the current systems, by providing tag trackings; (7) the overall structure of the dependable processor is proposed with a dependability manager which controls the detection of illegal conditions and recovers to the normal mode; and (8) an FPGA-based testbed system is developed where the system clock and the voltage are intentionally varied for experiment. The paper presents the fundamental scheme for the dependability, elemental technologies for dependability and the whole architecture of the ultra dependable processor. After showing them, the paper concludes with future works.

  • Formulas for Counting the Numbers of Connected Spanning Subgraphs with at Most n+1 Edges in a Complete Graph Kn

    Peng CHENG  Shigeru MASUYAMA  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2314-2321

    Let Ni be the number of connected spanning subgraphs with i(n-1 i m) edges in an n-vertex m-edge undirected graph G=(V,E). Although Nn-1 is computed in polynomial time by the Matrix-tree theorem, whether Nn is efficiently computed for a graph G is an open problem (see e.g., [2]). On the other hand, whether Nn2≥ Nn-1Nn+1 for a graph G is also open as a part of log concave conjecture (see e.g., [6],[12]). In this paper, for a complete graph Kn, we give the formulas for Nn, Nn+1, by which Nn, Nn+1 are respectively computed in polynomial time on n, and, in particular, prove Nn2> Nn-1Nn+1 as well.

  • Performance Analysis of a Collision Detection Algorithm of Spheres Based on Slab Partitioning

    Takashi IMAMICHI  Hiroshi NAGAMOCHI  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2308-2313

    In this paper, we consider a collision detection problem of spheres which asks to detect all pairs of colliding spheres in a set of n spheres located in d-dimensional space. We propose a collision detection algorithm for spheres based on slab partitioning technique and a plane sweep method. We derive a theoretical upper bound on the time complexity of the algorithm. Our bound tells that if both the dimension and the maximum ratio of radii of two spheres are bounded, then our algorithm runs in O(n log n + K) time with O(n + K) space, where K denotes the number of pairs of colliding spheres.

  • A Fuzzy Estimation Theory for Available Operation of Extremely Complicated Large-Scale Network Systems

    Kazuo HORIUCHI  

     
    PAPER-Nonlinear System Theory

      Vol:
    E91-A No:9
      Page(s):
    2396-2402

    In this paper, we shall describe about a fuzzy estimation theory based on the concept of set-valued operators, suitable for available operation of extremely complicated large-scale network systems. Fundamental conditions for availability of system behaviors of such network systems are clarified in a form of β-level fixed point theorem for system of fuzzy-set-valued operators. Here, the proof of this theorem is accomplished in a weak topology introduced into the Banach space.

  • Composite Signaling Coded Cooperation for Fast and Slow Fading

    Asaduzzaman  Hyung Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:9
      Page(s):
    3025-3029

    Motivated by the recent works of coded cooperation this letter presents a composite signal structure based coded cooperation technique. Our proposed protocol performs well in both slow and fast fading whereas, conventional coded cooperation is ineffective in fast fading. We develop the bounds on BER and FER of our proposal. Simulations confirm our developed bound and shows that the proposed coded cooperation protocol outperforms direct transmission in both fast and slow fading environments.

1861-1880hit(3945hit)