The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

1921-1940hit(3945hit)

  • A Simple Adaptive Algorithm for Principle Component and Independent Component Analysis

    Hyun-Chool SHIN  Hyoung-Nam KIM  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E91-A No:5
      Page(s):
    1265-1267

    In this letter we propose a simple adaptive algorithm which solves the unit-norm constrained optimization problem. Instead of conventional parameter norm based normalization, the proposed algorithm incorporates single parameter normalization which is computationally much simpler. The simulation results illustrate that the proposed algorithm performs as good as conventional ones while being computationally simpler.

  • Integrity Management Infrastructure for Trusted Computing

    Seiji MUNETOH  Megumi NAKAMURA  Sachiko YOSHIHAMA  Michiharu KUDO  

     
    INVITED PAPER

      Vol:
    E91-D No:5
      Page(s):
    1242-1251

    Computer security concerns have been rapidly increasing because of repeated security breaches and leakages of sensitive personal information. Such security breaches are mainly caused by an inappropriate management of the PCs, so maintaining integrity of the platform configuration is essential, and, verifying the integrity of the computer platform and software becomes more significant. To address these problems, the Trusted Computing Group (TCG) has developed various specifications that are used to measure the integrity of the platform based on hardware trust. In the trusted computing technology, the integrity data of each component running on the platform is recorded in the security chip and they are securely checked by a remote attestation. The infrastructure working group in the TCG is trying to define an Integrity Management Infrastructure in which the Platform Trust Services (PTS) is a new key component which deals with an Integrity Report. When we use the PTS in the target platform, it is a service component that collects and measures the runtime integrity of the target platform in a secure way. The PTS can also be used to validate the Integrity Reports. We introduce the notion of the Platform Validation Authority, a trusted third party, which verifies the composition of the integrity measurement of the target platform in the Integrity Reports. The Platform Validation Authority complements the role of the current Certificate Authority in the Public Key Infrastructure which attests to the integrity of the user identity as well as to related artifacts such as digital signatures. In this paper, we cover the research topics in this new area, the relevant technologies and open issues of the trusted computing, and the detail of our PTS implementation.

  • A Design of HEMT Comparators for Ultrahigh-Speed A/D Conversion

    Hiroshi WATANABE  Shunsuke NAKAMURA  Takao WAHO  

     
    PAPER

      Vol:
    E91-C No:5
      Page(s):
    688-692

    HEMT comparators for ultrahigh-speed A/D converters have been investigated. In particular, the transition times of the D-latch used in the comparator have been analyzed by assuming a 0.1-µm HEMT technology. It is found that for small input signals (<0.1 V), the transition time from the track to latch phase dominates the comparator operation speed. As the input signal increases, this time decreases due to the positive feedback in the latch, and the comparator speed is limited by the transition time from the latch to track phase. The transition times of 20 ps have been estimated for the present comparator.

  • Noise Robust Motion Refinement for Motion Compensated Noise Reduction

    Jong-Sun KIM  Lee-Sup KIM  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E91-D No:5
      Page(s):
    1581-1583

    A motion refinement algorithm is proposed to enhance motion compensated noise reduction (MCNR) efficiency. Instead of the vector with minimum distortion, the vector with minimum distance from motion vectors of neighboring blocks is selected as the best motion vector among vectors which have distortion values within the range set by noise level. This motion refinement finds more accurate motion vectors in the noisy sequences. The MCNR with the proposed algorithm maintains the details of an image sequence very well without blurring and joggling. And it achieves 10% bit-usage reduction or 0.5 dB objective quality enhancement in subsequent video coding.

  • Low-Complexity Code Acquisition Method in DS/CDMA Communication Systems: Application of the Maximum Likelihood Method to Propagation Delay Estimation

    Nobuoki ESHIMA  Tohru KOHDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1472-1479

    Code acquisition performance in the Direct-Sequence Code-Division Multiple-Access (DS/CDMA) communication system is strongly related to the quality of the communication systems. The performance is assessed by (i) code acquisition time; (ii) precision; and (iii) complexity for implementation. This paper applies the method of maximum likelihood (ML) to estimation of propagation delay in DS/CDMA communications, and proposes a low-complexity method for code acquisition. First, a DS/CDMA system model and properties of outputs with a passive matched-filter receiver are reviewed, and a statistical problem in code acquisition is mentioned. Second, an error-controllable code acquisition method based on the maximum likelihood is discussed. Third, a low-complexity ML code acquisition method is proposed. It is shown that the code acquisition time with the low-complexity method is about 1.5 times longer than that with the original ML method, e.g. 13 data periods under 4.96 dB.

  • Video Encoding Scheme Employing Intra and Inter Prediction Based on Averaged Template Matching Predictors

    Yoshinori SUZUKI  Choong Seng BOON  Thiow Keng TAN  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:4
      Page(s):
    1127-1134

    In video compression, the information transmitted from the encoder to the decoder can be classified into two categories: side information, which carries action instructions to be performed, and data such as the residual error of the texture. As video compression technology has matured, better compression has been achieved by increasing the ratio of side information to data, while reducing the overall bit rate. However, there is a limit to this method because the side information becomes a significant fraction of the overall bit rate. In recent video compression technologies, the decoder tends to share the burden of the decision making in order to achieve a higher compression ratio. To further improve the coding efficiency, we tried to provide the decoder with a more active role in reducing the amount of data. According to this approach, by using reconstructed pixels that surround a target block to produce a better sample predictor of the target block, the amount of side information and the residual error of the texture are reduced. Furthermore, multiple candidates of the sample predictor are utilized to create a better sample predictor without increasing the amount of side information. In this paper, we employ a template matching method that makes the decoder more active. The template matching method is applied to the conventional video codec to improve the prediction performance of intra, inter, and bi-directional pictures in video. The results show that improvements in coding efficiency up to 5.8% are achieved.

  • Characterization of Two-Stage Composite Right- and Left-Handed Transmission Lines

    Shun NAKAGAWA  Koichi NARAHARA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:4
      Page(s):
    631-637

    The characteristics of two-stage composite right- and left-handed (CRLH) transmission lines are discussed. The dispersion relationship of both balanced and unbalanced two-stage CRLH lines is described, together with numerical calculations that demonstrate their potential.

  • Recursion Theoretic Operators for Function Complexity Classes

    Kenya UENO  

     
    PAPER-Computation and Computational Models

      Vol:
    E91-D No:4
      Page(s):
    990-995

    We characterize the gap between time and space complexity of functions by operators and completeness. First, we introduce a new notion of operators for function complexity classes based on recursive function theory and construct an operator which generates FPSPACE from FP. Then, we introduce new function classes composed of functions whose output lengths are bounded by the input length plus some constant. We characterize FP and FPSPACE by using these classes and operators. Finally, we define a new notion of completeness for FPSPACE and show a FPSPACE-complete function.

  • An Ultra-Low-Voltage Ultra-Low-Power Weak Inversion Composite MOS Transistor: Concept and Applications

    Luis H.C. FERREIRA  Tales C. PIMENTA  Robson L. MORENO  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:4
      Page(s):
    662-665

    This work presents an ultra-low-voltage ultra-low-power weak inversion composite MOS transistor. The steady state power consumption and the linear swing signal of the composite transistor are comparable to a single transistor, whereas presenting very high output impedance. This work also presents two interesting applications for the composite transistor; a 1:1 current mirror and an extremely low power temperature sensor, a thermistor. Both implementations are verified in a standard 0.35-µm TSMC CMOS process. The current mirror presents high output impedance, comparable to the cascode configuration, which is highly desirable to improve gain and PSRR of amplifiers circuits, and mirroring relation in current mirrors.

  • Improving Automatic Text Classification by Integrated Feature Analysis

    Lazaro S.P. BUSAGALA  Wataru OHYAMA  Tetsushi WAKABAYASHI  Fumitaka KIMURA  

     
    PAPER-Pattern Recognition

      Vol:
    E91-D No:4
      Page(s):
    1101-1109

    Feature transformation in automatic text classification (ATC) can lead to better classification performance. Furthermore dimensionality reduction is important in ATC. Hence, feature transformation and dimensionality reduction are performed to obtain lower computational costs with improved classification performance. However, feature transformation and dimension reduction techniques have been conventionally considered in isolation. In such cases classification performance can be lower than when integrated. Therefore, we propose an integrated feature analysis approach which improves the classification performance at lower dimensionality. Moreover, we propose a multiple feature integration technique which also improves classification effectiveness.

  • Resource and Performance Evaluations of Fixed Point QRD-RLS Systolic Array through FPGA Implementation

    Yoshiaki YOKOYAMA  Minseok KIM  Hiroyuki ARAI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1068-1075

    At present, when using space-time processing techniques with multiple antennas for mobile radio communication, real-time weight adaptation is necessary. Due to the progress of integrated circuit technology, dedicated processor implementation with ASIC or FPGA can be employed to implement various wireless applications. This paper presents a resource and performance evaluation of the QRD-RLS systolic array processor based on fixed-point CORDIC algorithm with FPGA. In this paper, to save hardware resources, we propose the shared architecture of a complex CORDIC processor. The required precision of internal calculation, the circuit area for the number of antenna elements and wordlength, and the processing speed will be evaluated. The resource estimation provides a possible processor configuration with a current FPGA on the market. Computer simulations assuming a fading channel will show a fast convergence property with a finite number of training symbols. The proposed architecture has also been implemented and its operation was verified by beamforming evaluation through a radio propagation experiment.

  • Efficient Transmit Power Allocation with Partial Feedback for Closed-Loop SQRD Based V-BLAST Systems

    Hoiyoon JUNG  Jongsub CHA  Hyuckjae LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1219-1222

    This letter proposes an efficient transmit power allocation using partial channel information feedback for the closed-loop sorted QR decomposition (SQRD) based V-BLAST systems. For the feedback information, the positive real-valued diagonal elements of R are forwarded to the transmitter. With the proposed transmit power allocation that is numerically derived by the Lagrange optimization method, the bit error rate performance of the system can be remarkably improved compare to the conventional open-loop SQRD based V-BLAST systems without increasing the receiver complexity.

  • Cross-Correlation by Single-bit Signal Processing for Ultrasonic Distance Measurement

    Shinnosuke HIRATA  Minoru Kuribayashi KUROSAWA  Takashi KATAGIRI  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    1031-1037

    Ultrasonic distance measurement using the pulse-echo method is based on the determination of the time of flight of ultrasonic waves. The pulse-compression technique, in which the cross-correlation function of a detected ultrasonic wave and a transmitted ultrasonic wave is obtained, is the conventional method used for improving the resolution of distance measurement. However, the calculation of a cross-correlation operation requires high-cost digital signal processing. This paper presents a new method of sensor signal processing within the pulse-compression technique using a delta-sigma modulated single-bit digital signal. The proposed sensor signal processing method consists of a cross-correlation operation employing single-bit signal processing and a smoothing operation involving a moving average filter. The proposed method reduces the calculation cost of the digital signal processing of the pulse-compression technique.

  • Boundary Conditions for Numerical Stability Analysis of Periodic Solutions of Ordinary Differential Equations

    Sunao MURASHIGE  

     
    PAPER-Nonlinear Problems

      Vol:
    E91-A No:4
      Page(s):
    1162-1168

    This paper considers numerical methods for stability analyses of periodic solutions of ordinary differential equations. Stability of a periodic solution can be determined by the corresponding monodromy matrix and its eigenvalues. Some commonly used numerical methods can produce inaccurate results of them in some cases, for example, near bifurcation points or when one of the eigenvalues is very large or very small. This work proposes a numerical method using a periodic boundary condition for vector fields, which preserves a critical property of the monodromy matrix. Numerical examples demonstrate effectiveness and a drawback of this method.

  • Motion-Compensated Frame Interpolation for Intra-Mode Blocks

    Sang-Heon LEE  Hyuk-Jae LEE  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:4
      Page(s):
    1117-1126

    Motion-compensated frame interpolation (MCFI) is widely used to smoothly display low frame rate video sequences by synthesizing and inserting new frames between existing frames. The temporal shift interpolation technique (TSIT) is popular for frame interpolation of video sequences that are encoded by a block-based video coding standard such as MPEG-4 or H.264/AVC. TSIT assumes the existence of a motion vector (MV) and may not result in high-quality interpolation for intra-mode blocks that do not have MVs. This paper proposes a new frame interpolation algorithm mainly designed for intra-mode blocks. In order to improve the accuracy of pixel interpolation, the new algorithm proposes sub-pixel interpolation and the reuse of MVs for their refinement. In addition, the new algorithm employs two different interpolation modes for inter-mode blocks and intra-mode blocks, respectively. The use of the two modes reduces ghost artifacts but potentially increases blocking effects between the blocks interpolated by different modes. To reduce blocking effects, the proposed algorithm searches the boundary of an object and interpolates all blocks in the object in the same mode. Simulation results show that the proposed algorithm improves PSNR by an average of 0.71 dB compared with the TSIT with MV refinement and also significantly improves the subjective quality of pictures by reducing ghost artifacts.

  • Comparison of Classification Methods for Detecting Emotion from Mandarin Speech

    Tsang-Long PAO  Yu-Te CHEN  Jun-Heng YEH  

     
    PAPER-Human-computer Interaction

      Vol:
    E91-D No:4
      Page(s):
    1074-1081

    It is said that technology comes out from humanity. What is humanity? The very definition of humanity is emotion. Emotion is the basis for all human expression and the underlying theme behind everything that is done, said, thought or imagined. Making computers being able to perceive and respond to human emotion, the human-computer interaction will be more natural. Several classifiers are adopted for automatically assigning an emotion category, such as anger, happiness or sadness, to a speech utterance. These classifiers were designed independently and tested on various emotional speech corpora, making it difficult to compare and evaluate their performance. In this paper, we first compared several popular classification methods and evaluated their performance by applying them to a Mandarin speech corpus consisting of five basic emotions, including anger, happiness, boredom, sadness and neutral. The extracted feature streams contain MFCC, LPCC, and LPC. The experimental results show that the proposed WD-MKNN classifier achieves an accuracy of 81.4% for the 5-class emotion recognition and outperforms other classification techniques, including KNN, MKNN, DW-KNN, LDA, QDA, GMM, HMM, SVM, and BPNN. Then, to verify the advantage of the proposed method, we compared these classifiers by applying them to another Mandarin expressive speech corpus consisting of two emotions. The experimental results still show that the proposed WD-MKNN outperforms others.

  • Motion Belts: Visualization of Human Motion Data on a Timeline

    Hiroshi YASUDA  Ryota KAIHARA  Suguru SAITO  Masayuki NAKAJIMA  

     
    PAPER-Computer Graphics

      Vol:
    E91-D No:4
      Page(s):
    1159-1167

    Because motion capture system enabled us to capture a number of human motions, the demand for a method to easily browse the captured motion database has been increasing. In this paper, we propose a method to generate simple visual outlines of motion clips, for the purpose of efficient motion data browsing. Our method unfolds a motion clip into a 2D stripe of keyframes along a timeline that is based on semantic keyframe extraction and the best view point selection for each keyframes. With our visualization, timing and order of actions in the motions are clearly visible and the contents of multiple motions are easily comparable. In addition, because our method is applicable for a wide variety of motions, it can generate outlines for a large amount of motions fully automatically.

  • Migration Effects of Parallel Genetic Algorithms on Line Topologies of Heterogeneous Computing Resources

    Yiyuan GONG  Senlin GUAN  Morikazu NAKAMURA  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    1121-1128

    This paper investigates migration effects of parallel genetic algorithms (GAs) on the line topology of heterogeneous computing resources. Evolution process of parallel GAs is evaluated experimentally on two types of arrangements of heterogeneous computing resources: the ascending and descending order arrangements. Migration effects are evaluated from the viewpoints of scalability, chromosome diversity, migration frequency and solution quality. The results reveal that the performance of parallel GAs strongly depends on the design of the chromosome migration in which we need to consider the arrangement of heterogeneous computing resources, the migration frequency and so on. The results contribute to provide referential scheme of implementation of parallel GAs on heterogeneous computing resources.

  • Power-Aware Compiler Controllable Chip Multiprocessor

    Hiroaki SHIKANO  Jun SHIRAKO  Yasutaka WADA  Keiji KIMURA  Hironori KASAHARA  

     
    PAPER

      Vol:
    E91-C No:4
      Page(s):
    432-439

    A power-aware compiler controllable chip multiprocessor (CMP) is presented and its performance and power consumption are evaluated with the optimally scheduled advanced multiprocessor (OSCAR) parallelizing compiler. The CMP is equipped with power control registers that change clock frequency and power supply voltage to functional units including processor cores, memories, and an interconnection network. The OSCAR compiler carries out coarse-grain task parallelization of programs and reduces power consumption using architectural power control support and the compiler's power saving scheme. The performance evaluation shows that MPEG-2 encoding on the proposed CMP with four CPUs results in 82.6% power reduction in real-time execution mode with a deadline constraint on its sequential execution time. Furthermore, MP3 encoding on a heterogeneous CMP with four CPUs and four accelerators results in 53.9% power reduction at 21.1-fold speed-up in performance against its sequential execution in the fastest execution mode.

  • MIMO-OFDM MAP Receiver with Spatial-Temporal Filters Employing Decision-Directed Recursive Eigenvalue Decomposition Parameter Estimation

    Fan LISHENG  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1112-1121

    This paper proposes a new parameter estimation method for the MIMO-OFDM MAP receiver with spatial-temporal filters. The proposed method employs eigenvalue decomposition (EVD) so as to attain precise estimates especially under interference-limited conditions in MIMO-OFDM mobile communications. Recursive EVD is introduced to reduce the computational complexity compared to the nonrecursive EVD. The spatial-temporal prewhitening is placed prior to FFT because this arrangement is superior to that of conventional prewhitening posterior to FFT in accuracy of the parameter estimation. In order to improve tracking capability to fast fading, the proposed scheme applies a decision-directed algorithm to the parameter estimation by using log-likelihood ratios of coded bits. Computer simulations demonstrate that the proposed scheme can track fast fading and reduce the complexity to 18 percents of the conventional one, and that the spatial-temporal filtering prior to FFT outperforms the conventional one posterior to FFT.

1921-1940hit(3945hit)