The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

1901-1920hit(3945hit)

  • Fast Searching Algorithm for Vector Quantization Based on Subvector Technique

    ShanXue CHEN  FangWei LI  WeiLe ZHU  TianQi ZHANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:7
      Page(s):
    2035-2040

    A fast algorithm to speed up the search process of vector quantization encoding is presented. Using the sum and the partial norms of a vector, some eliminating inequalities are constructeded. First the inequality based on the sum is used for determining the bounds of searching candidate codeword. Then, using an inequality based on subvector norm and another inequality combining the partial distance with subvector norm, more unnecessary codewords are eliminated without the full distance calculation. The proposed algorithm can reject a lot of codewords, while introducing no extra distortion compared to the conventional full search algorithm. Experimental results show that the proposed algorithm outperforms the existing state-of-the-art search algorithms in reducing the computational complexity and the number of distortion calculation.

  • An Effective GML Documents Compressor

    Jihong GUAN  Shuigeng ZHOU  Yan CHEN  

     
    PAPER-Database

      Vol:
    E91-D No:7
      Page(s):
    1982-1990

    As GML is becoming the de facto standard for geographic data storage, transmission and exchange, more and more geographic data exists in GML format. In applications, GML documents are usually very large in size because they contain a large number of verbose markup tags and a large amount of spatial coordinate data. In order to speedup data transmission and reduce network cost, it is essential to develop effective and efficient GML compression tools. Although GML is a special case of XML, current XML compressors are not effective if directly applied to GML, because these compressors have been designed for general XML data. In this paper, we propose GPress, a compressor for effectively compressing GML documents. To the best of our knowledge, GPress is the first compressor specifically for GML documents compression. GPress exploits the unique characteristics of GML documents to achieve good performance. Extensive experiments over real-world GML documents show that GPress evidently outperforms XMill (one of the best existing XML compressors) in compression ratio, while its compression efficiency is comparable to the existing XML compressors.

  • Coherent Decomposition of Fully Polarimetric FM-CW Radar Data

    Jun NAKAMURA  Kazuyasu AOYAMA  Muneyuki IKARASHI  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  

     
    PAPER-Sensing

      Vol:
    E91-B No:7
      Page(s):
    2374-2379

    This paper presents a coherent decomposition scheme for polarimetric SAR data. Coherent decomposition means the decomposition is applied to a single or a few scattering matrix data. Based on the scattering matrix acquired with an FM-CW polarimetric SAR system, we have devised a simple decomposition technique using the coherency matrix for the purpose of identifying scatterers. This paper presents the decomposition technique and some decomposition results obtained by a fully polarimetric FM-CW radar. It is shown the scattering mechanisms are well recovered and the orientation angles of wire scatterer are precisely measured.

  • Zero-Correlation Zone Sequence Set Constructed from a Perfect Sequence and a Complementary Sequence Pair

    Takafumi HAYASHI  

     
    LETTER

      Vol:
    E91-A No:7
      Page(s):
    1676-1681

    The present paper introduces the construction of a class of sequence sets with zero-correlation zones called zero-correlation zone sequence sets. The proposed zero-correlation zone sequence set can be generated from an arbitrary perfect sequence and an arbitrary Golay complementary sequence pair. The proposed construction is a generalization of the zero-correlation zone sequence construction previously reported by the present author. The proposed sequence set can successfully provide CDMA communication without co-channel interference.

  • GO-STOP Control Using Optical Brain-Computer Interface during Calculation Task

    Kei UTSUGI  Akiko OBATA  Hiroki SATO  Ryuta AOKI  Atsushi MAKI  Hideaki KOIZUMI  Kazuhiko SAGARA  Hiroaki KAWAMICHI  Hirokazu ATSUMORI  Takusige KATURA  

     
    PAPER

      Vol:
    E91-B No:7
      Page(s):
    2133-2141

    We have developed a prototype optical brain-computer interface (BCI) system that can be used by an operator to manipulate external, electrically controlled equipment. Our optical BCI uses near-infrared spectroscopy and functions as a compact, practical, unrestrictive, non-invasive brain-switch. The optical BCI system measured spatiotemporal changes in the hemoglobin concentrations in the blood flow of a subject's prefrontal cortex at 22 measurement points. An exponential moving average (EMA) filter was applied to the data, and then their weighted sum with a task-related parameter derived from a pretest is utilized for time-indicated control (GO-STOP) of an external object. In experiments using untrained subjects, the system achieved control patterns within an accuracy of 6 sec for more than 80% control.

  • NoC-Compatible Wrapper Design and Optimization under Channel-Bandwidth and Test-Time Constraints

    Fawnizu Azmadi HUSSIN  Tomokazu YONEDA  Hideo FUJIWARA  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:7
      Page(s):
    2008-2017

    The IEEE 1500 standard wrapper requires that its inputs and outputs be interfaced directly to the chip's primary inputs and outputs for controllability and observability. This is typically achieved by providing a dedicated Test Access Mechanism (TAM) between the wrapper and the primary inputs and outputs. However, when reusing the embedded Network-on-Chip (NoC) interconnect instead of the dedicated TAM, the standard wrapper cannot be used as is because of the packet-based transfer mechanism and other functional requirements by the NoC. In this paper, we describe two NoC-compatible wrappers, which overcome these limitations of the 1500 wrapper. The wrappers (Type 1 and Type 2) complement each other to optimize NoC bandwidth utilization while minimizing the area overhead. The Type 2 wrapper uses larger area overhead to increase bandwidth efficiency, while Type 1 takes advantage of some special configurations which may not require a complex and high-cost wrapper. Two wrapper optimization algorithms are applied to both wrapper designs under channel-bandwidth and test-time constraints, resulting in very little or no increase in the test application time compared to conventional dedicated TAM approaches.

  • A Nonlinear Distortion Compensation Method with Adaptive Predistorter and Negative Feed-Back for a Narrow-Band Signal

    Yitao ZHANG  Osamu MUTA  Yoshihiko AKAIWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2331-2337

    The adaptive predistorter and the negative feedback system are known as methods to compensate for the nonlinear distortion of a power amplifier. Although the feedback method is a simple technique, its instability impedes the capability of high-feedback gain to achieve a high-compensation effect. On the other hand, the predistorter requires a long time for convergence of the adaptive predistorters. In this paper, we propose a nonlinear distortion compensation method for a narrow-band signal. In this method, an adaptive predistorter and negative feedback are combined. In addition, to shorten the convergence time to minimize nonlinear distortion, a variable step-size (VS) method is also applied to the algorithm to determine the parameters of the adaptive predistorter. Using computer simulations, we show that the proposed scheme achieves both five times faster convergence speed than that of the predistorter and three times higher permissible delay time in the feedback amplifier than that of a negative feedback only amplifier.

  • Balanced Three-Phase Active-RC Tow-Thomas Biquad Complex Filter for Wireless Communication Systems

    Junya MATSUNO  Hiroki SATO  Akira HYOGO  Keitaro SEKINE  

     
    LETTER

      Vol:
    E91-C No:6
      Page(s):
    945-948

    A three-phase complex filter for a balanced three-phase analog signal processing is proposed. The proposed three-phase active-RC Tow-Thomas biquad complex filter can reduce total resistance by 10 percent, total capacitance by 25 percent, and power consumption by 22 percent compared to a conventional fully differential quadrature complex one.

  • Capacity Based Fast Receive Antenna Subset Selection in MIMO System

    Wei GUAN  Hanwen LUO  Haibin ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    2049-2052

    In this letter, we develop a two-step receive antenna selection method to maximize channel capacity. Different from previous work, we first derive a lower bound on capacity based on Hadamard inequality and arithmetic-geometric mean inequality, which is then used to iteratively drop the worst-performing antennas according to their measure. The recursive nature of this method helps to largely reduce the computational complexity.

  • Throughput Performance Improvement Using Complexity-Reduced User Scheduling Algorithm in Uplink Multi-User MIMO/SDM Systems

    Manabu MIKAMI  Teruya FUJII  

     
    PAPER-Smart Antennas & MIMO

      Vol:
    E91-B No:6
      Page(s):
    1724-1733

    Multi-user MIMO (Multiple Input Multiple Output) systems, in which multiple Mobile Stations (MSs) equipped with multiple antennas simultaneously communicate with a Base Station (BS) equipped with multiple antennas, at the same frequency, are attracting attention because of their potential for improved transmission performance in wireless communications. In the uplink of Space Division Multiplexing based multi-user MIMO (multi-user MIMO/SDM) systems that do not require full Channel State Information (CSI) at the transmitters, selecting active MS antennas, which corresponds to scheduling transmit antennas, is an effective technique. The Full search Selection Algorithm based on exhaustive search (FSA) has been studied as an optimal active MS antenna selection algorithm for multi-user MIMO systems. Unfortunately, FSA suffers from extreme computational complexity given large numbers of MSs. To solve this problem, this paper introduces the Gram-Schmidt orthogonalization based Selection Algorithm (GSSA) to uplink multi-user MIMO/SDM systems. GSSA is a suboptimal active MS antenna selection algorithm that offers lower computational complexity than the optimal algorithm. This paper evaluates the transmission performance improvement of GSSA in uplink multi-user MIMO/SDM systems under realistic propagation conditions such as spatially correlated BS antennas and clarifies the effectiveness of GSSA.

  • Frequency-Domain QR-Decomposed and Equalized MLD for Single-Carrier MIMO Systems over Multipath Fading Channels

    Tetsuhiko MIYATANI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    2058-2062

    This letter describes a new QR-decomposition maximum likelihood detector that is combined with frequency-domain equalization for single-carrier transmission based multiple-input multiple-output systems. By utilizing the equalized substreams to adjust the frequency selectivity in corresponding substreams in subsequent stages, the packet error rate performances of the proposed detector is superior to that of the minimum mean squared error receiver by a factor of the receive antenna diversity gain.

  • Compensation Effect of Quasi-Inverse Filter (QIF) on Frequency Characteristic Distortion in Wideband Systems

    Mitoshi FUJIMOTO  Haiyan ZHAO  Toshikazu HORI  

     
    PAPER-Antennas

      Vol:
    E91-B No:6
      Page(s):
    1783-1790

    High-speed wireless communication systems have attracted much attention in recent years. To achieve a high-speed wireless communication system that utilizes an ultra-wide-frequency band, a broadband antenna is required. However, it is difficult to obtain an antenna that has uniform characteristics in a broad frequency band. Moreover, propagation characteristics are distorted in a multi-path environment. Thus, the communication quality tends to degrade due to the distortion in the frequency characteristics of the wideband communication system. This paper proposes a quasi-inverse filter (QIF) to improve the compensation effect for the transmitter antenna. Furthermore, we propose a method that employs the newly developed QIF that compensates for frequency characteristic distortion. We evaluate different configurations for the compensation system employing a pre-filter and post-filter in the wideband communication system. The effectiveness of the QIF in the case of severe distortion is verified by computer simulation. The proposed method is applied to a disc monopole antenna as a concrete example of a broadband antenna, and the compensation effect for the antenna is indicated.

  • Factors of Incomplete Adaptation for Color Reproduction Considering Subjective White Point Shift for Varying Illuminant

    Sung-Hak LEE  Myoung-Hwa LEE  Kyu-Ik SOHNG  

     
    LETTER

      Vol:
    E91-A No:6
      Page(s):
    1438-1442

    In this paper, we investigated the effect of chromaticity and luminance of surround to decide subject neutral white, and conducted a mathematical model of adapting degree for environment. Factors for adapting degree consist of two parts, adapting degree of ambient chromaticity and color saturation. These can be applied to color appearance models (CAM), actually improve the performance of color matching of CAM, hence would produce the method of image reproduction to general display systems.

  • Fast Convergence Blind Source Separation Using Frequency Subband Interpolation by Null Beamforming

    Keiichi OSAKO  Yoshimitsu MORI  Yu TAKAHASHI  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    LETTER

      Vol:
    E91-A No:6
      Page(s):
    1357-1361

    We propose a new algorithm for the blind source separation (BSS) approach in which independent component analysis (ICA) and frequency subband beamforming interpolation are combined. The slow convergence of the optimization of the separation filters is a problem in ICA. Our approach to resolving this problem is based on the relationship between ICA and null beamforming (NBF). The proposed method consists of the following three parts: (I) a frequency subband selector part for learning ICA, (II) a frequency domain ICA part with direction-of-arrivals (DOA) estimation of sound sources, and (III) an interpolation part in which null beamforming constructed with the estimated DOA is used. The results of the signal separation experiments under a reverberant condition reveal that the convergence speed is superior to that of the conventional ICA-based BSS methods.

  • Rapid Compensation of Temperature Fluctuation Effect for Multichannel Sound Field Reproduction System

    Yuki YAI  Shigeki MIYABE  Hiroshi SARUWATARI  Kiyohiro SHIKANO  Yosuke TATEKURA  

     
    PAPER

      Vol:
    E91-A No:6
      Page(s):
    1329-1336

    In this paper, we propose a computationally efficient method of compensating temperature for the transaural stereo. The conventional method can be used to estimate the change in impulse responses caused by the fluctuation of temperature with high accuracy. However, the large amount of computation required makes real-time implementation difficult. Focusing on the fact that the amount of compensation depends on the length of the impulse response, we reduce the computation required by segmenting the impulse response. We segment the impulse responses in the time domain and estimate the effect of temperature fluctuation for each of the segments. By joining the processed segments, we obtain the compensated impulse response of the whole length. Experimental results show that the proposed method can reduce the computation required by a factor of nine without degradation of the accuracy.

  • Integrity Management Infrastructure for Trusted Computing

    Seiji MUNETOH  Megumi NAKAMURA  Sachiko YOSHIHAMA  Michiharu KUDO  

     
    INVITED PAPER

      Vol:
    E91-D No:5
      Page(s):
    1242-1251

    Computer security concerns have been rapidly increasing because of repeated security breaches and leakages of sensitive personal information. Such security breaches are mainly caused by an inappropriate management of the PCs, so maintaining integrity of the platform configuration is essential, and, verifying the integrity of the computer platform and software becomes more significant. To address these problems, the Trusted Computing Group (TCG) has developed various specifications that are used to measure the integrity of the platform based on hardware trust. In the trusted computing technology, the integrity data of each component running on the platform is recorded in the security chip and they are securely checked by a remote attestation. The infrastructure working group in the TCG is trying to define an Integrity Management Infrastructure in which the Platform Trust Services (PTS) is a new key component which deals with an Integrity Report. When we use the PTS in the target platform, it is a service component that collects and measures the runtime integrity of the target platform in a secure way. The PTS can also be used to validate the Integrity Reports. We introduce the notion of the Platform Validation Authority, a trusted third party, which verifies the composition of the integrity measurement of the target platform in the Integrity Reports. The Platform Validation Authority complements the role of the current Certificate Authority in the Public Key Infrastructure which attests to the integrity of the user identity as well as to related artifacts such as digital signatures. In this paper, we cover the research topics in this new area, the relevant technologies and open issues of the trusted computing, and the detail of our PTS implementation.

  • Approximating the Best Linear Unbiased Estimator of Non-Gaussian Signals with Gaussian Noise

    Masashi SUGIYAMA  Motoaki KAWANABE  Gilles BLANCHARD  Klaus-Robert MULLER  

     
    LETTER-Pattern Recognition

      Vol:
    E91-D No:5
      Page(s):
    1577-1580

    Obtaining the best linear unbiased estimator (BLUE) of noisy signals is a traditional but powerful approach to noise reduction. Explicitly computing the BLUE usually requires the prior knowledge of the noise covariance matrix and the subspace to which the true signal belongs. However, such prior knowledge is often unavailable in reality, which prevents us from applying the BLUE to real-world problems. To cope with this problem, we give a practical procedure for approximating the BLUE without such prior knowledge. Our additional assumption is that the true signal follows a non-Gaussian distribution while the noise is Gaussian.

  • Slow-Wave Effect of Electronically-Controlled Composite Right/Left-Handed (CRLH) Transmission Line

    Sungjoon LIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:5
      Page(s):
    1665-1668

    A dispersion diagram is useful in interpreting the characteristics of a periodic structure. In particular, the fast-wave region, where the wave is radiating, and the slow-wave region, where the wave is guided, can be determined from the dispersion diagram. An electronically-controlled composite right/left-handed (CRLH) transmission line (TL) was previously proposed and utilized as a leaky-wave (LW) antenna operating in the fast-wave region. However, since a guided-wave application operates in the slow-wave region, it is meaningful to study slow-wave effects of the proposed TL. In this paper, the dispersion diagram is used to investigate the slow-wave factor (SWF), which is necessary to understand the fast/slow-wave operations. Furthermore, the frequency characteristics are measured to find the cut-off frequencies in the LH and RH regions. Based on experimental results, it is observed at a fixed frequency, 2.6-GHz, that the phase of a proposed 6-cell structure can be changed by up to 280 in the LH slow-wave region.

  • Studies on Modification of Channel Material and Gate Recess Structures in Metamorphic HEMT for Improvement of Breakdown and RF Characteristics

    Seok Gyu CHOI  Young Hyun BAEK  Jung Hun OH  Min HAN  Seok Ho BANG  Jin-Koo RHEE  

     
    PAPER

      Vol:
    E91-C No:5
      Page(s):
    683-687

    In this study, we have performed both the channel modification of the conventional MHEMT (Metamorphic High Electron Mobility Transistor) and the variation of gate recess width to improve the breakdown and RF characteristics. The modified channel consists of the InxGa1-xAs and the InP layers. Since InP has lower impact ionization coefficient than In0.53Ga0.47As, we have adopted the InP-composite channel in the modified MHEMT. Also, the gate recess width is both functions of breakdown and RF characteristic of a HEMT structure. Therefore, we have studied the breakdown and RF characteristic for various gate recess widths in MHEMT. We have compared breakdown characteristic of the InP-composite channel with that of conventional MHEMT. It is shown that on and off state breakdown voltages of the InP-composite channel MHEMT were increased by about 20 and 27%, respectively, compared with the conventional structure. Also, breakdown voltage of the InP-composite channel MHEMT was increased with increasing gate recess width. The fT was increased with decreasing the gate recess width, whereas fmax was increased with increasing the gate recess width. Also, we extracted small-signal parameters. It was shown that Gd of the InP-composite channel MHEMT is decreased about by 30% compared with the conventional MHEMT. Therefore, the suppression of the impact ionization in the InP-composite channel increases the breakdown voltage and decreases the output conductance.

  • A Simple Adaptive Algorithm for Principle Component and Independent Component Analysis

    Hyun-Chool SHIN  Hyoung-Nam KIM  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E91-A No:5
      Page(s):
    1265-1267

    In this letter we propose a simple adaptive algorithm which solves the unit-norm constrained optimization problem. Instead of conventional parameter norm based normalization, the proposed algorithm incorporates single parameter normalization which is computationally much simpler. The simulation results illustrate that the proposed algorithm performs as good as conventional ones while being computationally simpler.

1901-1920hit(3945hit)