The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

2141-2160hit(3945hit)

  • On Step-by-Step Complete Decoding Triple-Error-Correcting Binary BCH Codes

    Shyue-Win WEI  

     
    LETTER-Coding Theory

      Vol:
    E89-A No:11
      Page(s):
    3360-3362

    According to the properties found in the algebraic complete decoding method for triple-error-correcting binary Bose-Chaudhuri-Hocquenghem (BCH) codes, a step-by-step complete decoding algorithm of this code is presented.

  • A Cost Effective Interconnection Network for Reconfigurable Computing Processor in Digital Signal Processing Applications

    Yeong-Kang LAI  Lien-Fei CHEN  Jian-Chou CHEN  Chun-Wei CHIU  

     
    LETTER

      Vol:
    E89-C No:11
      Page(s):
    1674-1675

    In this paper, a novel cost effective interconnection network for two-way pipelined SIMD-based reconfigurable computing processor is proposed. Our reconfigurable computing engine is composed of the SIMD-based function units, flexible interconnection networks, and two-bank on-chip memories. In order to connect the function units, the reconfigurable network is proposed to connect all neighbors of each function unit. The proposed interconnection network is a kind of full and bidirectional connection with the data duplication to perform the data-parallelism applications efficiently. Moreover, it is a multistage network to accomplish the high flexibility and low hardware cost.

  • Minimum Variance Multi-User Detection with Optimum Subband Decomposition over Multipath Channels

    Wan-Shing YANG  Wen-Hsien FANG  Che-Yu LIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:11
      Page(s):
    3075-3082

    This paper presents a linear constrained minimum variance multiuser detection (MUD) scheme for DS-CDMA systems, which makes full use of the available spreading sequences of the users as well as the relevant channel information of the incoming rays in the construction of the constraint matrix. To further enhance the performance, a statistical optimum filter bank in combination with the developed minimum variance MUD with the partitioned linear interference canceller (PLIC) as the underlying structure is also addressed. The determination of the filter bank coefficients, however, calls for computationally demanding nonlinear programming. To alleviate the computational overhead, an iterative procedure is also proposed, which solves the Rayleigh quotient in each iteration. Furthermore, the expressions of the output signal to interference plus noise ratio (SINR) are also determined to provide further insights into the proposed approach. Conducted simulations validate the new scheme.

  • Complexity and a Heuristic Algorithm of Computing Parallel Degree for Program Nets with SWITCH-Nodes

    Shingo YAMAGUCHI  Tomohiro TAKAI  Tatsuya WATANABE  Qi-Wei GE  Minoru TANAKA  

     
    PAPER-Concurrent Systems

      Vol:
    E89-A No:11
      Page(s):
    3207-3215

    This paper deals with computation of parallel degree, PARAdeg, for (dataflow) program nets with SWITCH-nodes. Ge et al. have given the definition of PARAdeg and an algorithm of computing PARAdeg for program nets with no SWITCH-nodes. However, for program nets with SWITCH-nodes, any algorithm of computing PARAdeg has not been proposed. We first show that it is intractable to compute PARAdeg for program nets with SWITCH-nodes. To do this, we define a subclass of program nets with SWITCH-nodes, named structured program nets, and then show that the decision problem related to compute PARAdeg for acyclic structured program nets is NP-complete. Next, we give a heuristic algorithm to compute PARAdeg for acyclic structured program nets. Finally, we do experiments to evaluate our heuristic algorithm for 200 acyclic structured program nets. We can say that the heuristic algorithm is reasonable, because its accuracy is more than 96% and the computation time can be greatly reduced.

  • Evolutionary Computing of Petri Net Structure for Cyclic Job Shop Scheduling

    Morikazu NAKAMURA  Koji HACHIMAN  Hiroki TOHME  Takeo OKAZAKI  Shiro TAMAKI  

     
    PAPER-Concurrent Systems

      Vol:
    E89-A No:11
      Page(s):
    3235-3243

    This paper considers Cyclic Job-Shop Scheduling Problems (CJSSP) extended from the Job-Shop Scheduling Problem (JSSP). We propose an evolutionary computing method to solve the problem approximately by generating the Petri net structure for scheduling. The crossover proposed in this paper employs structural analysis of Petri net model, that is, the crossover improves the cycle time by breaking the bottle-neck circuit obtained by solving a linear programming problem. Experimental evaluation shows the effectiveness of our approach.

  • On the Maximum Throughput of a Combined Input-Crosspoint Queued Packet Switch

    Roberto ROJAS-CESSA  Zhen GUO  Nirwan ANSARI  

     
    LETTER-Switching for Communications

      Vol:
    E89-B No:11
      Page(s):
    3120-3123

    Combined input-crosspoint buffered (CICB) packet switches have been of research interest in the last few years because of their high performance. These switches provide higher performance than input-buffered (IB) packet switches while requiring the crosspoint buffers run at the same speed as that of the input buffers in IB switches. Recently, it has been shown that CICB switches with one-cell crosspoint buffers, virtual output queues, and simple input and output arbitrations, provide 100% throughput under uniform traffic. However, it is of general interest to know the maximum throughput that a CICB switch, with no speedup, can provide under admissible traffic. This paper analyzes the throughput performance of a CICB switch beyond uniform traffic patterns and shows that a CICB switch with one-cell crosspoint buffers can provide 100% throughput under admissible traffic while using no speedup.

  • On the S-Box Architectures with Concurrent Error Detection for the Advanced Encryption Standard

    Shee-Yau WU  Huang-Ting YEN  

     
    PAPER-Cryptography

      Vol:
    E89-A No:10
      Page(s):
    2583-2588

    In this paper, we present a new low-cost concurrent error detection (CED) S-Box architecture for the Advanced Encryption Standard (AES). Because the complexity and the nonlinearity, it is difficult to develop error detection algorithms for the S-Box. Conventionally, a parity checked S-Box is implemented with ROM (read only memory). In some applications, for example, smart cards, both chip size and fault detection are demanded seriously. ROM-based parity checking cannot meet the demands. We propose our CED S-Box (CEDSB) architecture for two reasons. The first is to design a S-Box without ROM. The second is to obtain a compact S-Box with real time error detection. Based on the composite field, we develop the CEDSB architecture to implement the fault detection for the S-Box. The overhead of the CED for the S-Boxes in GF((24)2) and in GF(((22)2)2) are 152 and 132 NAND gates respectively. The amount of extra gates used for the CEDSB is nearly equal to that of the ROM-based CED S-Box (131 NAND gates). The chip area of the ROM-based CED S-Box, the CEDSBs in GF((24)2), and in GF(((22)2)2) are 2996, 558, and 492 NAND gates separately. The chip area of the CEDSB is more compact than a ROM-based CED S-Box.

  • Prioritized Transmission Gain for Mobile Visual Communications

    Hyungkeuk LEE  Sanghoon LEE  

     
    LETTER

      Vol:
    E89-B No:10
      Page(s):
    2809-2812

    For point-to-point mobile visual communications, layered video has been utilized to adapt to time-varying channel capacity over noisy environments. From the perspective of the HVS (Human Visual System), it is necessary to minimize the loss of visual quality by specifically maintaining the throughput of visually important regions, objects and so on. Utilizing the prioritized bitstreams generated according to each layer, the throughput can be improved for given channel statistics. In this paper, we define the transmission gain and measure the improved performance when the throughput of ROI (Regions Of Interest) is increased relative to visually unimportant regions over a capacity limited mobile channel.

  • A Refined Theory for Available Operation of Extremely Complicated Large-Scale Network Systems

    Kazuo HORIUCHI  

     
    PAPER-Modelling, Systems and Simulation

      Vol:
    E89-A No:10
      Page(s):
    2692-2696

    In this paper, we shall describe about a refined theory based on the concept of set-valued operators, suitable for available operation of extremely complicated large-scale network systems. The deduction of theory is accomplished in a weak topology introduced into the Banach space. Fundamental conditions for availability of system behaviors of such network systems are clarified, as a result, in a form of fixed point theorem for system of set-valued operators.

  • Multiple L-Shift Complementary Sequences

    Yan XIN  Ivan J. FAIR  

     
    PAPER-Sequences

      Vol:
    E89-A No:10
      Page(s):
    2640-2648

    We introduce an extension of Golay complementary sequences in which, for each sequence, there exists another sequence such that the sum of aperiodic autocorrelation functions of these two sequences for a given multiple L-shift (L≥1) is zero except for the zero shift. We call these sequences multiple L-shift complementary sequences. It is well-known that the peak-to-average power ratio (PAPR) value of any Golay complementary sequence is less than or equal to 2. In this paper, we show that the PAPR of each multiple L-shift complementary sequence is less than or equal to 2L. We also discuss other properties of the sequences and consider their construction.

  • DS-CDMA Non-linear Interference Canceller with Multiple-Beam Reception

    Kazuto YANO  Susumu YOSHIDA  

     
    PAPER-Spread Spectrum

      Vol:
    E89-A No:10
      Page(s):
    2609-2621

    In this paper, a multistage parallel interference canceller (MPIC) with multiple-beam reception for a DS-CDMA system is proposed to suppress multiple access interference (MAI) effectively. Its aim is to reduce the computational complexity of the conventional MPIC cascaded with an adaptive array antenna. It employs multiple fixed beams based on phased array and selects suitable beams to demodulate the transmitted signal of each user. Then it suppresses residual interference signals by the MPIC cascaded with multiple-beam receiver. Its bit error rate (BER) performance is evaluated by computer simulations assuming an uplink single-chip-rate multiple-spreading-factor DS-CDMA system over both exponentially decaying 5-path and equal average power 2-path Rayleigh distributed channels. When there are 16 users in an 120-sectored single cell, the proposed receiver with 6-element array antenna and 2-stage MPIC shows better or comparable BER performance compared with that of the conventional receiver. Moreover, the proposed receiver with 8 beams can reduce the number of complex multiplications to about 40% of that of the complexity-reduced conventional receiver over 5-path channels.

  • Adomian Decomposition for Studying Hyperchaotic 2D-Scroll Attractors with Application to Synchronization

    Donato CAFAGNA  Giuseppe GRASSI  

     
    PAPER-Oscillation, Dynamics and Chaos

      Vol:
    E89-A No:10
      Page(s):
    2752-2758

    In this paper the attention is focused on the numerical study of hyperchaotic 2D-scroll attractors via the Adomian decomposition method. The approach, which provides series solutions of the system equations, is first applied to weakly-coupled Chua's circuits with Hermite interpolating polynomials. Then the method is successfully utilized for achieving hyperchaos synchronization of two coupled Chua's circuits. The reported examples show that the approach presents two main features, i.e., the system nonlinearity is preserved and the chaotic solution is provided in a closed form.

  • A Decomposition-Technique-Based Algorithm for Nonlinear Large Scale Mesh-Interconnected System and Application

    Shieh-Shing LIN  Huay CHANG  

     
    PAPER-Systems and Control

      Vol:
    E89-A No:10
      Page(s):
    2847-2856

    In this paper, we propose two techniques to solve the nonlinear constrained optimization problem in large scale mesh-interconnected system. The first one is a diagram-method-based decomposition technique which decomposes the large scale system into some small subsystems. The second technique is a projected-Jacobi-based parallel dual-type method which can solve the optimization problems in the decomposed subsystems efficiently. We have used the proposed algorithm to solve numerous examples of large scale constrained optimization problems in power system. The test results show that the proposed algorithm has computational efficiency with respect to the conventional approach of the centralized Newton method and the state-of-the-art Block-Parallel Newton method.

  • Zero-Knowledge and Correlation Intractability

    Satoshi HADA  Toshiaki TANAKA  

     
    PAPER-Information Security

      Vol:
    E89-A No:10
      Page(s):
    2894-2905

    The notion of correlation intractable function ensembles (CIFEs) was introduced in an attempt to capture the "unpredictability" property of random oracles [12]: If O is a random oracle then it is infeasible to find an input x such that the input-output pair (x,O(x)) has some desired property. In this paper, we observe relationships between zero-knowledge protocols and CIFEs. Specifically, we show that, in the non-uniform model, the existence of CIFEs implies that 3-round auxiliary-input zero-knowledge (AIZK) AM interactive proofs exist only for BPP languages. In the uniform model, we show that 3-round AIZK AM interactive proofs with perfect completeness exist only for easy-to-approximate languages. These conditional triviality results extend to constant-round AIZK AM interactive proofs assuming the existence of multi-input CIFEs, where "multi-input" means that the correlation intractability is satisfied with respect to multiple input-output pairs. Also, as a corollary, we show that any construction of uniform multi-input CIFEs from uniform one-way functions proves unconditionally that constant-round AIZK AM interactive proofs with perfect completeness only for easy-to-approximate languages.

  • Optimal Server Replication Schemes to Reduce Location Management Cost in Cellular Network

    Sung-Hwa LIM  Jai-Hoon KIM  

     
    PAPER-Network

      Vol:
    E89-B No:10
      Page(s):
    2841-2849

    The default server strategy is commonly used to manage the location and state of mobile hosts in cellular networks. With this strategy, connections can be established after the client obtains the location information of the mobile host by querying the default server. Unfortunately, the communication cost increases if the query requests are frequent and the distance between the default server and the client is long. Still more, no connection to a mobile host can be established when the default server of the destination mobile host fails. These problems can be solved by replicating the default servers and by letting the nearest replicated default server process the query request which is sent from a client [9]. It is important to allocate replicated default servers efficiently in networks and determine the number of replicated default servers. In this paper, we suggest and evaluate a default server replication strategy to reduce communication costs and to improve service availabilities. We consider optimal replication degree as well as location for replicating the default servers in n-grid and tree networks.

  • A Security Analysis of Double-Block-Length Hash Functions with the Rate 1

    Shoichi HIROSE  

     
    PAPER-Cryptography

      Vol:
    E89-A No:10
      Page(s):
    2575-2582

    In this article, the security of double-block-length hash functions with the rate 1 is analyzed, whose compression functions are composed of block ciphers with their key length twice larger than their block length. First, the analysis by Satoh, Haga and Kurosawa is investigated, and it is shown that there exists a case uncovered by their analysis. Second, a large class of compression functions are defined, and it is shown that they are at most as secure as those of single-block-length hash functions. Finally, some candidate hash functions are given which are possibly optimally collision-resistant.

  • Binary Zero-Correlation Zone Sequence Set Construction Using a Cyclic Hadamard Sequence

    Takafumi HAYASHI  

     
    PAPER-Sequences

      Vol:
    E89-A No:10
      Page(s):
    2649-2655

    The present paper introduces a new construction of a class of binary periodic sequence set having a zero-correlation zone (hereinafter binary ZCA sequence set). The cross-correlation function and the side-lobe of the auto-correlation function of the proposed sequence set is zero for the phase shifts within the zero-correlation zone. The present paper shows that such a construction generates a binary ZCA sequence set by using a cyclic difference set and a collection of mutually orthogonal complementary sets.

  • An Effective Pseudo-Transient Algorithm for Finding DC Solutions of Nonlinear Circuits

    Hong YU  Yasuaki INOUE  Yuki MATSUYA  Zhangcai HUANG  

     
    PAPER-Modelling, Systems and Simulation

      Vol:
    E89-A No:10
      Page(s):
    2724-2731

    The pseudo-transient method is discussed in this paper as one of practical methods to find DC operating points of nonlinear circuits when the Newton-Raphson method fails. The mathematical description for this method is presented and an effective pseudo-transient algorithm utilizing compound pseudo-elements is proposed. Numerical examples are demonstrated to prove that our algorithm is able to avoid the oscillation problems effectively and also improve the simulation efficiency.

  • Compression/Scan Co-design for Reducing Test Data Volume, Scan-in Power Dissipation, and Test Application Time

    Yu HU  Yinhe HAN  Xiaowei LI  Huawei LI  Xiaoqing WEN  

     
    PAPER-Dependable Computing

      Vol:
    E89-D No:10
      Page(s):
    2616-2625

    LSI testing is critical to guarantee chips are fault-free before they are integrated in a system, so as to increase the reliability of the system. Although full-scan is a widely adopted design-for-testability technique for LSI design and testing, there is a strong need to reduce the test data Volume, scan-in Power dissipation, and test application Time (VPT) of full-scan testing. Based on the analysis of the characteristics of the variable-to-fixed run-length coding technique and the random access scan architecture, this paper presents a novel design scheme to tackle all VPT issues simultaneously. Experimental results on ISCAS'89 benchmarks have shown on average 51.2%, 99.5%, 99.3%, and 85.5% reduction effects in test data volume, average scan-in power dissipation, peak scan-in power dissipation, and test application time, respectively.

  • Node-Disjoint Paths Algorithm in a Transposition Graph

    Yasuto SUZUKI  Keiichi KANEKO  Mario NAKAMORI  

     
    PAPER-Algorithm Theory

      Vol:
    E89-D No:10
      Page(s):
    2600-2605

    In this paper, we give an algorithm for the node-to-set disjoint paths problem in a transposition graph. The algorithm is of polynomial order of n for an n-transposition graph. It is based on recursion and divided into two cases according to the distribution of destination nodes. The maximum length of each path and the time complexity of the algorithm are estimated theoretically to be O(n7) and 3n - 5, respectively, and the average performance is evaluated based on computer experiments.

2141-2160hit(3945hit)