The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

2381-2400hit(3945hit)

  • An Image Processing Approach for the Measurement of Pedestrian Crossing Length Using Vector Geometry

    Mohammad Shorif UDDIN  Tadayoshi SHIOYAMA  

     
    PAPER-Image Processing and Multimedia Systems

      Vol:
    E88-D No:7
      Page(s):
    1546-1552

    A new and simple image processing approach for the measurement of the length of pedestrian crossings with a view to develop a travel aid for the blind people is described. In a crossing, the usual black road surface is painted with constant width periodic white bands. The crossing length is estimated using vector geometry from the left- and the right-border lines, the first-, the second- and the end-edge lines of the crossing region. Image processing techniques are applied on the crossing image to find these lines. Experimental results using real road scenes with pedestrian crossing confirm the effectiveness of the proposed method.

  • Blind Separation of Speech by Fixed-Point ICA with Source Adaptive Negentropy Approximation

    Rajkishore PRASAD  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    PAPER-Blind Source Separation

      Vol:
    E88-A No:7
      Page(s):
    1683-1692

    This paper presents a study on the blind separation of a convoluted mixture of speech signals using Frequency Domain Independent Component Analysis (FDICA) algorithm based on the negentropy maximization of Time Frequency Series of Speech (TFSS). The comparative studies on the negentropy approximation of TFSS using generalized Higher Order Statistics (HOS) of different nonquadratic, nonlinear functions are presented. A new nonlinear function based on the statistical modeling of TFSS by exponential power functions has also been proposed. The estimation of standard error and bias, obtained using the sequential delete-one jackknifing method, in the approximation of negentropy of TFSS by different nonlinear functions along with their signal separation performance indicate the superlative power of the exponential-power-based nonlinear function. The proposed nonlinear function has been found to speed-up convergence with slight improvement in the separation quality under reverberant conditions.

  • A Cell-Driven Multiplier Generator with Delay Optimization of Partial Products Compression and an Efficient Partition Technique for the Final Addition

    Tso-Bing JUANG  Shen-Fu HSIAO  Ming-Yu TSAI  Jenq-Shiun JAN  

     
    PAPER-Digital Circuits and Computer Arithmetic

      Vol:
    E88-D No:7
      Page(s):
    1464-1471

    In this paper, a cell-driven multiplier generator is developed that can produce high-performance gate-level netlists for multiplier-related arithmetic functional units, including multipliers, multiplier and accumulators (MAC) and dot product calculator. The generator optimizes the speed/area performance both in the partial product compression and in the final addition stage for the specified process technology. In addition to the conventional CMOS full adder cells, we have also designed fast compression elements based on pass-transistor logic for further performance improvement of the generated multipliers. Simulation results show that our proposed generator could produce better multiplier-related functional units compared to those generated using Synopsys Designware library or other previously proposed approaches.

  • Phase Compensation Technique for a Low-Power Transconductor

    Rui ITO  Tetsuro ITAKURA  Tadashi ARAI  

     
    LETTER-Building Block

      Vol:
    E88-C No:6
      Page(s):
    1263-1266

    In a direct conversion receiver for mobile communication, it is important to reduce power dissipation. Because a low pass filter in a direct conversion receiver must suppress adjacent channel signals, a high order and high power dissipation is often required in the low pass filter. We propose a new phase compensation technique suitable for a low power transconductor used in a GmC filter as a low pass filter. The new phase compensation technique reduces 10% of power dissipation.

  • Moment Computations of Distributed Coupled RLC Interconnects with Applications to Estimating Crosstalk Noise

    Herng-Jer LEE  Chia-Chi CHU  Ming-Hong LAI  Wu-Shiung FENG  

     
    PAPER-CAD

      Vol:
    E88-C No:6
      Page(s):
    1186-1195

    A method is proposed to compute moments of distributed coupled RLC interconnects. Both uniform line models and non-uniform line models will be developed. Considering both self inductances and mutual inductances in multi-conductors, recursive moment computations formulae of lumped coupled RLC interconnects are extended to those of distributed coupled RLC interconnects. By using the moment computation technique in conjunction with the projection-based order reduction method, the inductive crosstalk noise waveform can be accurately and efficiently estimated. Fundamental developments of the proposed approach will be described. Simulation results demonstrate the improved accuracy of the proposed method over the traditional lumped methods.

  • The Efficient and Robust Error Resilient Entropy Coding of Compressed Image for Wireless Communications

    Jeong-Sig KIM  Ju-Do KIM  Keun-Young LEE  

     
    PAPER

      Vol:
    E88-A No:6
      Page(s):
    1448-1454

    Many image and video compression algorithms work by splitting the image into blocks and producing variable-length code bits for each block data. If variable-length code data are transmitted consecutively over error-prone channel without any error protection technique, the receiving decoder cannot decode the stream properly. So the standard image and video compression algorithms insert some redundant information into the stream to provide some protection against channel errors. One of such redundancy is resynchronization marker, which enables the decoder to restart the decoding process from a known state in the event of transmission errors, but its frequent use should be restricted not to consume bandwidth too much. The Error Resilient Entropy Code (EREC) is well known method which can regain synchronization without any redundant information. It can work with the overall prefix codes, which many image compression methods use. This paper proposes an improvement to FEREC (Fast Error-Resilient Entropy Coding). It first calculates initial searching position according to bit lengths of consecutive blocks. Second, initial offset is decided using statistical distribution of long and short blocks, and initial offset is adjusted to insure all possible offset value can be examined. The proposed algorithm can speed up the construction of EREC slots, and can preserve compressed image quality in the event of transmission errors. The simulation result shows that the quality of transmitted image is enhanced about 0.3-3.5 dB compared with the existing FEREC when random channel error happens.

  • Improving Data Recovery in MPEG-4

    Liyang XU  Sunil KUMAR  Mrinal MANDAL  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E88-D No:6
      Page(s):
    1306-1309

    In this paper, we present an MPEG-4 decoding scheme based on reversible variable length code. The scheme is purely decoder based and compliance with the standard is fully maintained. Moreover, the data recovery scheme suggested in MPEG-4 can still be used as the default scheme. Simulation results show that the proposed scheme achieves better data recovery, both in terms of PSNR and perceptual quality, from error propagation region of a corrupted video packet, as compared to existing MPEG-4 scheme.

  • Dynamic Asset Allocation for Stock Trading Optimized by Evolutionary Computation

    Jangmin O  Jongwoo LEE  Jae Won LEE  Byoung-Tak ZHANG  

     
    PAPER-e-Business Modeling

      Vol:
    E88-D No:6
      Page(s):
    1217-1223

    Effective trading with given pattern-based multi-predictors of stock price needs an intelligent asset allocation strategy. In this paper, we study a method of dynamic asset allocation, called the meta policy, which decides how much the proportion of asset should be allocated to each recommendation for trade. The meta policy makes a decision considering both the recommending information of multi-predictors and the current ratio of stock funds over the total asset. We adopt evolutionary computation to optimize the meta policy. The experimental results on the Korean stock market show that the trading system with the proposed meta policy outperforms other systems with fixed asset allocation methods.

  • A Simplified Maximum Likelihood Detector for OFDM-SDM Systems in Wireless LAN

    Wenjie JIANG  Takeshi ONIZAWA  Atsushi OHTA  Satoru AIKAWA  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2427-2437

    This paper presents a reduced-complexity maximum likelihood detection (MLD) scheme for orthogonal frequency division multiplexing with space division multiplexing (OFDM-SDM) systems. Original MLD is known to be an optimal scheme for detecting the spatially multiplexed signals. However, MLD suffers from an exponentially computational complexity because it involves an exhaustive search for the optimal result. In this paper, we propose a novel detection scheme, which drastically reduce the complexity of MLD while keeping performance losses small. The proposed scheme decouples the spatially multiplexed signals in two stages. In stage one, the estimated symbols obtained from zero-forcing (ZF) are used to limit the candidate symbol vectors. In stage two, to form a final estimate of the transmitted symbol vector, the Euclidean or original defined likelihood metric is examined over all symbol vectors obtained from stage 1. Both the bit error rate (BER) and packet error rate (PER) performances are evaluated over a temporally and spatially uncorrelated frequency selective channel through the computer simulations. For a four-transmit and four-receive OFDM-SDM system transmitting data at 144 Mbit/s and 216 Mbit/ss i.e., employing 16 Quadrature Amplitude Modulation (16QAM) and 64QAM subcarrier modulation over 16.6 MHz bandwidth channel, the degradation in required SNR from MLD for PER = 1% are about 0.6 dB and 1.5 dB, respectively. However, the complexity of MLD is reduced to 0.51000% and 0.01562%.

  • Practical Passive Filter Synthesis Using Genetic Programming

    Hao-Sheng HOU  Shoou-Jinn CHANG  Yan-Kuin SU  

     
    PAPER-CAD

      Vol:
    E88-C No:6
      Page(s):
    1180-1185

    This paper proposes a genetic programming method to synthesize passive filter circuits. This method allows both the circuit topology and the component values to be evolved simultaneously. Experiments show that this method is fast and capable of generating circuits which are more economical than those generated by traditional design approaches. In addition, we take into account practical design considerations at high-frequency applications, where the component values are frequency-dependent and restricted to some discrete values. Experimental results show that our method can effectively generate not only compliant but also economical circuits for practical design tasks.

  • Extracting Components from Object-Oriented System: A Transformational Approach

    Eunjoo LEE  Woochang SHIN  Byungjeong LEE  Chisu WU  

     
    PAPER-Software Engineering

      Vol:
    E88-D No:6
      Page(s):
    1178-1190

    The increasing complexity and shorter life cycle of software have made it necessary to reuse software. Object-oriented development has not facilitated extensive reuse of software and it has become difficult to manage and understand modern object-oriented systems which have become very extensive and complex. However, components, compared with objects, provide more advanced means of structuring, describing and developing systems, because they are more coarse grained and have more domain-specific aspects than objects. In addition, they are also suited to a current distributed environment due to their reusability, maintainability and granularity. In this paper, we present a process of extracting components from object-oriented systems. We define some static metrics and guidelines that can be applied to transform object-oriented systems into component-based systems. Our process consists of two parts. First, basic components are created based on composition and inheritance relationships between classes. Second, the intermediate system is refined into a component-based system with our proposed static metrics and guidelines.

  • Antennas and Propagation in the Presence of Metamaterials and Other Complex Media: Computational Electromagnetic Advances and Challenges

    Richard W. ZIOLKOWSKI  

     
    INVITED PAPER

      Vol:
    E88-B No:6
      Page(s):
    2230-2238

    There have been significant advances in computational electromagnetics (CEM) in the last decade for a variety of antennas and propagation problems. Improvements in single frequency techniques including the finite element method (FEM), the fast mulitipole moment (FMM) method, and the method of moments (MoM) have led to significant simulation capabilities on basic computing platforms. Similar advances have occurred with time domain methods including finite difference time domain (FDTD) methods, time domain integral equation (TDIE) methods, and time domain finite element (TD-FEM) methods. Very complex radiating and scattering structures in the presence of complex materials have been modeled with many of these approaches. Many commercial products have been made available through the efforts of many individuals. The CEM simulators have enabled virtual EM test ranges that have led to dramatic improvements in our understanding of antennas and propagation in complex environments and to the realization of many of their important applications.

  • Hybrid Cascode Compensation for Two-Stage CMOS Opamps

    Mohammad YAVARI  

     
    PAPER-Building Block

      Vol:
    E88-C No:6
      Page(s):
    1161-1165

    This paper presents the analysis of hybrid cascode compensation scheme, merged Ahuja and improved Ahuja style compensation methods, which is used in two-stage CMOS operational transconductance amplifiers (OTAs). The open loop signal transfer function is derived to allow the accurate estimation of the poles and zeros. This analytical approach shows that the non-dominant poles and zeros of the hybrid cascode compensation are about 40 percent greater than those of the conventional cascode compensation. Circuit level simulation results are provided to show the accuracy of the calculated expressions and also the usefulness of the proposed cascode compensation technique.

  • Eigen Image Recognition of Pulmonary Nodules from Thoracic CT Images by Use of Subspace Method

    Gentaro FUKANO  Yoshihiko NAKAMURA  Hotaka TAKIZAWA  Shinji MIZUNO  Shinji YAMAMOTO  Kunio DOI  Shigehiko KATSURAGAWA  Tohru MATSUMOTO  Yukio TATENO  Takeshi IINUMA  

     
    PAPER-Biological Engineering

      Vol:
    E88-D No:6
      Page(s):
    1273-1283

    We have proposed a recognition method for pulmonary nodules based on experimentally selected feature values (such as contrast, circularity, etc.) of pathologic candidate regions detected by our Variable N-Quoit (VNQ) filter. In this paper, we propose a new recognition method for pulmonary nodules by use of not experimentally selected feature values, but each CT value itself in a region of interest (ROI) as a feature value. The proposed method has 2 phases: learning and recognition. In the learning phase, first, the pathologic candidate regions are classified into several clusters based on a principal component score. This score is calculated from a set of CT values in the ROI that are regarded as a feature vector, and then eigen vectors and eigen values are calculated for each cluster by application of principal component analysis to the cluster. The eigen vectors (we call them "eigen-images") corresponding to the S-th largest eigen values are utilized as base vectors for subspaces of the clusters in a feature space. In the recognition phase, correlations are measured between the feature vector derived from testing data and the subspace which is spanned by the eigen-images. If the correlation with the nodule subspace is large, the pathologic candidate region is determined to be a nodule, otherwise, it is determined to be a normal organ. In the experiment, first, we decide on the optimal number of subspace dimensions. Then, we demonstrated the robustness of our algorithm by using simulated nodule images.

  • A New Method for Offset Cancellation in High-Resolution High-Speed Comparators

    Jafar SOBHI-GHESHLAGHI  Khayrollah HADIDI  Abdollah KHOEI  

     
    PAPER-Building Block

      Vol:
    E88-C No:6
      Page(s):
    1154-1160

    High-Speed High-Resolution Comparators are integral parts of very high-speed high-resolution Analog-to-Digital Converters (ADC). Parallel successive-approximation and flash ADCS can boost conversion rates while providing high resolution, provided that accurate and fast offset-cancelled comparators could be implemented. Moreover, accurate offset cancellation is needed in accurate gain stages of other types of high speed ADCs as well. This has never been easy and creates a bottle neck for high-speed high-resolution ADCs. The reason is that conventional offset cancellation methods, suffer either from inaccurate cancellation or from slow operation. Hence, either speed or accuracy is compromised. This is due to the trade off of gain (accuracy) for bandwidth (speed) in conventional methods. Here, we introduce a new offset cancellation method which satisfies the need for both high-speed and accurate offset cancellation simultaneously.

  • High-Frequency Circuit Design Oriented Compact Bipolar Transistor Modeling with HICUM

    Michael SCHROTER  

     
    INVITED PAPER

      Vol:
    E88-C No:6
      Page(s):
    1098-1113

    An overview on the physics and circuit design oriented background of the advanced compact model HICUM is presented. Related topics such as the approach employed for geometry scaling and parameter extraction are briefly discussed. A model hierarchy is introduced, that addresses a variety of requirements encountered during the increasingly complicated task of designing analog and high-frequency circuits.

  • High-Speed Low Input Impedance CMOS Current Comparator

    Varakorn KASEMSUWAN  Surachet KHUCHAROENSIN  

     
    PAPER-Analog Signal Processing

      Vol:
    E88-A No:6
      Page(s):
    1549-1553

    A simple high-speed low input impedance CMOS current comparator is presented. The circuit uses improved Wilson current-mirror to perform subtraction. Negative feedback is employed to reduce the input impedance of the circuit. HSPICE is used to verify the circuit performance with standard 0.5 µm CMOS technology. Simulation results demonstrate propagation delay of 1.02 ns, average power consumption of 0.9 mW, and input impedance of 137 Ω for 0.1 µA input current at the supply voltage of 3 V.

  • Formulation of Mobile Agent Allocation and Its Strong NP-Completeness

    Atsushi SASAKI  Tadashi ARARAGI  Shigeru MASUYAMA  Keizo MIYATA  

     
    LETTER-Complexity Theory

      Vol:
    E88-D No:5
      Page(s):
    1060-1063

    We formally define the mobile agent allocation problem from a system-wide viewpoint and then prove that it is strongly NP-complete even if each agent communicates only with two agents. This is the first formal definition for scheduling mobile agents from the viewpoint of load balancing, which enables us to discuss its properties on a rigorous basis. The problem is recognized as preemptive scheduling with independent tasks that require mutual communication. The result implies that almost all subproblems of mobile agent allocation, which require mutual communication of agents, are strongly NP-complete.

  • Finding Yozume of Generalized Tsume-Shogi is Exptime-Complete

    Takayuki YATO  Takahiro SETA  Tsuyoshi ITO  

     
    PAPER

      Vol:
    E88-A No:5
      Page(s):
    1249-1257

    Generalized Tsume-Shogi (GTS) is Tsume-Shogi on the board of size n n for arbitrary n. The problem to decide the existence of a winning sequence of moves (where the attacker must always check) on an instance of GTS was proved to be exptime-complete by Yokota et al. (2000). This paper considers the complexity of yozume problem of GTS, which is, roughly speaking, the problem whether a given position of GTS has a winning sequence other than given sequences (though the actual rule of yozume is more complicated). The detection of yozume is an important issue in designing Tsume-Shogi problems, since the modern designing rule strongly prohibits it. We define a function problem of GTS appropriately to formulate yozume problem as its Another Solution Problem (ASP; the problem to decide the existence of solutions other than given ones). Moreover, we extend the existing framework for investigating ASPs so that it can be applied to exptime-complete problems. In particular, since the decision of correctness of given winning sequences is not easy, we establish a framework to treat ASP of function problems with promises. On the basis of these results, we prove that the decision version of yozume problem of GTS is exptime-complete as a promise problem using the existing reduction which was constructed by Yokota et al. to prove the exptime-completeness of GTS.

  • An Optical-Drop Wavelength Assignment Algorithm for Efficient Wavelength Reuse under Heterogeneous Traffic in WDM Ring Networks

    Nobuo FUNABIKI  Jun KAWASHIMA  Toru NAKANISHI  Kiyohiko OKAYAMA  Teruo HIGASHINO  

     
    PAPER

      Vol:
    E88-A No:5
      Page(s):
    1234-1240

    The wavelength-division multiplexing (WDM) technology has been popular in communication societies for providing very large communication bands by multiple lightpaths with different wavelengths on a single optical fiber. Particularly, a double-ring optical network architecture based on the packet-over-WDM technology such as the HORNET architecture, has been extensively studied as a next generation platform for metropolitan area networks (MANs). Each node in this architecture is equipped with a wavelength-fixed optical-drop and a fast tunable transmitter so that a lightpath can be established between any pair of nodes without wavelength conversions. In this paper, we formulate the optical-drop wavelength assignment problem (ODWAP) for efficient wavelength reuse under heterogeneous traffic in this network, and prove the NP-completeness of its decision problem. Then, we propose a simple heuristic algorithm for the basic case of ODWAP. Through extensive simulations, we demonstrate the effectiveness of our approach in reducing waiting times for packet transmissions when a small number of wavelengths are available to retain the network cost for MANs.

2381-2400hit(3945hit)