The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

921-940hit(3945hit)

  • Spatio-Temporal Prediction Based Algorithm for Parallel Improvement of HEVC

    Xiantao JIANG  Tian SONG  Takashi SHIMAMOTO  Wen SHI  Lisheng WANG  

     
    PAPER

      Vol:
    E98-A No:11
      Page(s):
    2229-2237

    The next generation high efficiency video coding (HEVC) standard achieves high performance by extending the encoding block to 64×64. There are some parallel tools to improve the efficiency for encoder and decoder. However, owing to the dependence of the current prediction block and surrounding block, parallel processing at CU level and Sub-CU level are hard to achieve. In this paper, focusing on the spatial motion vector prediction (SMVP) and temporal motion vector prediction (TMVP), parallel improvement for spatio-temporal prediction algorithms are presented, which can remove the dependency between prediction coding units and neighboring coding units. Using this proposal, it is convenient to process motion estimation in parallel, which is suitable for different parallel platforms such as multi-core platform, compute unified device architecture (CUDA) and so on. The simulation experiment results demonstrate that based on HM12.0 test model for different test sequences, the proposed algorithm can improve the advanced motion vector prediction with only 0.01% BD-rate increase that result is better than previous work, and the BDPSNR is almost the same as the HEVC reference software.

  • On Makespan, Migrations, and QoS Workloads' Execution Times in High Speed Data Centers Open Access

    Daniel LAGO  Edmundo MADEIRA  Deep MEDHI  

     
    INVITED PAPER

      Vol:
    E98-B No:11
      Page(s):
    2099-2110

    With the growth of cloud-based services, cloud data centers are experiencing large growth. A key component in a cloud data center is the network technology deployed. In particular, Ethernet technology, commonly deployed in cloud data centers, is already envisioned for 10 Tbps Ethernet. In this paper, we study and analyze the makespan, workload execution times, and virtual machine migrations as the network speed increases. In particular, we consider homogeneous and heterogeneous data centers, virtual machine scheduling algorithms, and workload scheduling algorithms. Results obtained from our study indicate that the increase in a network's speed reduces makespan and workloads execution times, while aiding in the increase of the number of virtual machine migrations. We further observed that the number of migrations' behaviors in relation to the speed of the networks also depends on the employed virtual machines scheduling algorithm.

  • Efficient Window-Based Channel Estimation for OFDM System in Multi-Path Fast Time-Varying Channels

    Yih-Haw JAN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:11
      Page(s):
    2330-2340

    Orthogonal frequency division multiplexing (OFDM) channel estimation is the key technique used in broadband wireless networks. The Doppler frequency caused by fast mobility environments will cause inter-carrier interference (ICI) and degrade the performance of OFDM systems. Due to the severe ICI, channel estimation becomes a difficult task in higher mobility scenarios. Our aim is to propose a pilot-aided channel estimation method that is robust to high Doppler frequency with low computational complexity and pilot overheads. In this paper, the time duration of each estimate covers multiple consecutive OFDM symbols, named a “window”. A close-form of polynomial channel modeling is derived. The proposed method is initialized to the least squares (LS) estimates of the channels corresponding to the time interval of the pilot symbols within the window. Then, the channel interpolation is performed in the entire window. The results of computer simulations and computation complexity evaluations show that the proposed technique is robust to high Doppler frequency with low computation complexity and low pilot overheads. Compared with the state-of-the-art method and some conventional methods, the new technique proposed here has much lower computational complexity while offering comparable performance.

  • A Brief Proof of General QAM Golay Complementary Sequences in Cases I-III Constructions

    Fanxin ZENG  Zhenyu ZHANG  

     
    LETTER-Information Theory

      Vol:
    E98-A No:10
      Page(s):
    2203-2206

    By investigating the properties that the offsets should satisfy, this letter presents a brief proof of general QAM Golay complementary sequences (GCSs) in Cases I-III constructions. Our aim is to provide a brief, clear, and intelligible derivation so that it is easy for the reader to understand the known Cases I-III constructions of general QAM GCSs.

  • MIMO Radar Receiver Design Based on Doppler Compensation for Range and Doppler Sidelobe Suppression

    Jinli CHEN  Jiaqiang LI  Lingsheng YANG  Peng LI  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E98-C No:10
      Page(s):
    977-980

    Instrumental variable (IV) filters designed for range sidelobe suppression in multiple-input multiple-output (MIMO) radar suffer from Doppler mismatch. This mismatch causes losses in peak response and increases sidelobe levels, which affect the performance of MIMO radar. In this paper, a novel method using the component-code processing prior to the IV filter design for MIMO radar is proposed. It not only compensates for the Doppler effects in the design of IV filter, but also offers more virtual sensors resulting in narrower beams with lower sidelobes. Simulation results are presented to verify the effectiveness of the method.

  • Matrix Approach for the Seasonal Infectious Disease Spread Prediction

    Hideo HIROSE  Masakazu TOKUNAGA  Takenori SAKUMURA  Junaida SULAIMAN  Herdianti DARWIS  

     
    PAPER

      Vol:
    E98-A No:10
      Page(s):
    2010-2017

    Prediction of seasonal infectious disease spread is traditionally dealt with as a function of time. Typical methods are time series analysis such as ARIMA (autoregressive, integrated, and moving average) or ANN (artificial neural networks). However, if we regard the time series data as the matrix form, e.g., consisting of yearly magnitude in row and weekly trend in column, we may expect to use a different method (matrix approach) to predict the disease spread when seasonality is dominant. The MD (matrix decomposition) method is the one method which is used in recommendation systems. The other is the IRT (item response theory) used in ability evaluation systems. In this paper, we apply these two methods to predict the disease spread in the case of infectious gastroenteritis caused by norovirus in Japan, and compare the results obtained by using two conventional methods in forecasting, ARIMA and ANN. We have found that the matrix approach is simple and useful in prediction for the seasonal infectious disease spread.

  • Construction of Z-Periodic Complementary Sequence Based on Interleaved Technique

    Yan WU  Yuanlong CAO  

     
    PAPER-Coding Theory

      Vol:
    E98-A No:10
      Page(s):
    2165-2170

    This paper proposes a construction method of binary Z-periodic complementary sequence set (Z-PCSs) based on binary aperiodic complementary sequence pair (Golay pair) and interleaved technique. The constructed set is optimal or almost optimal with respect to the theoretical bound in different conditons. The set can be used in multi-carrier code division multiple access communication systems. The designed sequence has periodic complementary characteristics, which lead to a strong ability to resist multi-path interference and multiple access interference.

  • Power-Saving in Storage Systems for Cloud Data Sharing Services with Data Access Prediction

    Koji HASEBE  Jumpei OKOSHI  Kazuhiko KATO  

     
    PAPER-Software System

      Pubricized:
    2015/06/30
      Vol:
    E98-D No:10
      Page(s):
    1744-1754

    We present a power-saving method for large-scale storage systems of cloud data sharing services, particularly those providing media (video and photograph) sharing services. The idea behind our method is to periodically rearrange stored data in a disk array, so that the workload is skewed toward a small subset of disks, while other disks can be sent to standby mode. This idea is borrowed from the Popular Data Concentration (PDC) technique, but to avoid an increase in response time caused by the accesses to disks in standby mode, we introduce a function that predicts future access frequencies of the uploaded files. This function uses the correlation of potential future accesses with the combination of elapsed time after upload and the total number of accesses in the past. We obtain this function in statistical analysis of the real access patterns of 50,000 randomly selected publicly available photographs on Flickr over 7,000 hours (around 10 months). Moreover, to adapt to a constant massive influx of data, we propose a mechanism that effectively packs the continuously uploaded data into the disk array in a storage system based on the PDC. To evaluate the effectiveness of our method, we measured the performance in simulations and a prototype implementation. We observed that our method consumed 12.2% less energy than the static configuration (in which all disks are in active mode). At the same time, our method maintained a preferred response time, with 0.23% of the total accesses involving disks in standby mode.

  • Some Notes on Pseudorandom Binary Sequences Derived from Fermat-Euler Quotients

    Zhifan YE  Pinhui KE  Shengyuan ZHANG  Zuling CHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E98-A No:10
      Page(s):
    2199-2202

    For an odd prime p and a positive integer r, new classes of binary sequences with period pr+1 are proposed from Euler quotients in this letter, which include several known classes of binary sequences derived from Fermat quotients and Euler quotients as special cases. The advantage of the new constructions is that they allow one to choose their support sets freely. Furthermore, with some constrains on the support set, the new sequences are proved to possess large linear complexities under the assumption of 2p-1 ≢ 1 mod p2.

  • A Note on the Degree Condition of Completely Independent Spanning Trees

    Hung-Yi CHANG  Hung-Lung WANG  Jinn-Shyong YANG  Jou-Ming CHANG  

     
    LETTER-Graphs and Networks

      Vol:
    E98-A No:10
      Page(s):
    2191-2193

    Given a graph G, a set of spanning trees of G are completely independent if for any vertices x and y, the paths connecting them on these trees have neither vertex nor edge in common, except x and y. In this paper, we prove that for graphs of order n, with n ≥ 6, if the minimum degree is at least n-2, then there are at least ⌊n/3⌋ completely independent spanning trees.

  • Optimality of Tweak Functions in CLOC

    Hayato KOBAYASHI  Kazuhiko MINEMATSU  Tetsu IWATA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E98-A No:10
      Page(s):
    2152-2164

    An Authenticated Encryption scheme is used to guarantee both privacy and authenticity of digital data. At FSE 2014, an authenticated encryption scheme called CLOC was proposed. CLOC is designed to handle short input data efficiently without needing heavy precomputation nor large memory. This is achieved by making various cases of different treatments in the encryption process depending on the input data. Five tweak functions are used to handle the conditional branches, and they are designed to satisfy 55 differential probability constraints, which are used in the security proof of CLOC. In this paper, we show that all these 55 constraints are necessary. This shows the design optimality of the tweak functions in CLOC in that the constraints cannot be relaxed, and hence the specification of the tweak functions cannot be simplified.

  • The Wear of Hot Switching Au/Cr-Au/MWCNT Contact Pairs for MEMS Contacts

    John W. McBRIDE  Hong LIU  Chamaporn CHIANRABUTRA  Adam P. LEWIS  

     
    PAPER

      Vol:
    E98-C No:9
      Page(s):
    912-918

    A gold coated carbon nanotubes composite was used as a contact material in Micro-Electrical-Mechanical-System (MEMS) switches. The switching contact was tested under typical conditions of MEMS relay applications: load voltage of 4 V, contact force of 1 mN, and load current varied between 20-200 mA. This paper focuses on the wear process over switching lifetime, and the dependence of the wear area on the current is discussed. It was shown that the contact was going to fail when the wear area approached the whole contact area, at which point the contact resistance increased sharply to three times the nominal resistance.

  • Discovery of Regular and Irregular Spatio-Temporal Patterns from Location-Based SNS by Diffusion-Type Estimation

    Yoshitatsu MATSUDA  Kazunori YAMAGUCHI  Ken-ichiro NISHIOKA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2015/06/10
      Vol:
    E98-D No:9
      Page(s):
    1675-1682

    In this paper, a new approach is proposed for extracting the spatio-temporal patterns from a location-based social networking system (SNS) such as Foursquare. The proposed approach consists of the following procedures. First, the spatio-temporal behaviors of users in SNS are approximated as a probabilistic distribution by using a diffusion-type formula. Since the SNS datasets generally consist of sparse check-in's of users at some time points and locations, it is difficult to investigate the spatio-temporal patterns on a wide range of time and space scales. The proposed method can estimate such wide range patterns by smoothing the sparse datasets by a diffusion-type formula. It is crucial in this method to estimate robustly the scale parameter by giving a prior generative model on check-in's of users. The robust estimation enables the method to extract appropriate patterns even in small local areas. Next, the covariance matrix among the time points is calculated from the estimated distribution. Then, the principal eigenfunctions are approximately extracted as the spatio-temporal patterns by principal component analysis (PCA). The distribution is a mixture of various patterns, some of which are regular ones with a periodic cycle and some of which are irregular ones corresponding to transient events. Though it is generally difficult to separate such complicated mixtures, the experiments on an actual Foursquare dataset showed that the proposed method can extract many plausible and interesting spatio-temporal patterns.

  • Isolated VM Storage on Clouds

    Jinho SEOL  Seongwook JIN  Seungryoul MAENG  

     
    LETTER-Dependable Computing

      Pubricized:
    2015/06/08
      Vol:
    E98-D No:9
      Page(s):
    1706-1710

    Even though cloud users want to keep their data on clouds secure, it is not easy to protect the data because cloud administrators could be malicious and hypervisor could be compromised. To solve this problem, hardware-based memory isolation schemes have been proposed. However, the data in virtual storage are not protected by the memory isolation schemes, and thus, a guest OS should encrypt the data. In this paper, we address the problems of the previous schemes and propose a hardware-based storage isolation scheme. The proposed scheme enables to protect user data securely and to achieve performance improvement.

  • Mass Spectra Separation for Explosives Detection by Using an Attenuation Model

    Yohei KAWAGUCHI  Masahito TOGAMI  Hisashi NAGANO  Yuichiro HASHIMOTO  Masuyuki SUGIYAMA  Yasuaki TAKADA  

     
    PAPER

      Vol:
    E98-A No:9
      Page(s):
    1898-1905

    A new algorithm for separating mass spectra into individual substances is proposed for explosives detection. The conventional algorithm based on probabilistic latent component analysis (PLCA) is effective in many cases because it makes use of the fact that non-negativity and sparsity hold for mass spectra in explosives detection. The algorithm, however, fails to separate mass spectra in some cases because uncertainty can not be resolved only by non-negativity and sparsity constraints. To resolve the uncertainty, an algorithm based on shift-invariant PLCA (SIPLCA) utilizing temporal correlation of mass spectra is proposed in this paper. In addition, to prevent overfitting, the temporal correlation is modeled with a function representing attenuation by focusing on the fact that the amount of a substance is attenuated continuously and slowly with time. Results of an experimental evaluation of the algorithm with data obtained in a real railway station demonstrate that the proposed algorithm outperforms the PLCA-based conventional algorithm and the simple SIPLCA-based one. The main novelty of this paper is that an evaluation of the detection performance of explosives detection is demonstrated. Results of the evaluation indicate that the proposed separation algorithm can improve the detection performance.

  • Competition Avoidance Policy for Network Coding-Based Epidemic Routing

    Cheng ZHAO  Sha YAO  Yang YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:9
      Page(s):
    1985-1989

    Network Coding-based Epidemic Routing (NCER) facilitates the reduction of data delivery delay in Delay Tolerant Networks (DTNs). The intrinsic reason lies in that the network coding paradigm avoids competitions for transmission opportunities between segmented packets of a large data file. In this paper, we focus on the impact of transmission competitions on the delay performance of NCER when multiple data files exist. We prove analytically that when competition occurs, transmitting the least propagated data file is optimal in the sense of minimizing the average data delivery delay. Based on such understanding, we propose a family of competition avoidance policies, namely the Least Propagated First (LPF) policies, which includes a centralized, a distributed, and a modified variants. Numerical results show that LPF policies can achieve at least 20% delay performance gain at different data traffic rates, compared with the policy currently available.

  • Fast Estimation of Shadowing Effects in Millimeter-Wave Short Range Communication by Modified Edge Representation (MER)

    Maifuz ALI  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:9
      Page(s):
    1873-1881

    Radio channel modeling is fundamental for designing wireless communication systems. In millimeter or sub-millimeter wave short range communication, shadowing effect by electrically-large objects is one of the most important factors determining the field strength and thus the coverage. Unfortunately, numerical methods like MoM, FDTD, FEM are unable to compute the field scattered by large objects due to their excessive time and memory requirements. Ray theory like geometrical theory of diffraction (GTD) by Keller is an effective and popular solution but suffers various kinds of singularities at geometrical boundaries such as incidence shadow boundary (ISB) or reflection shadow boundary (RSB). Modified edge representation (MER) equivalent edge current (EEC) is an accurate and a fast high frequency diffraction technique which expresses the fields in terms of line integration. It adopts classical Keller-type knife-edge diffraction coefficients and still provides uniform and highly accurate fields everywhere including geometrical boundaries. MER is used here to compute the millimeter-wave field distribution in compact range communication systems where shadowing effects rather than multi-path ones dominate the radio environments. For further simplicity, trigonometric functions in Keller's diffraction coefficients are replaced by the path lengths of source to the observer via the edge point of integration of the scatterers in the form of Fresnel zone number (FZN). Complexity, Computation time and the memory were reduced drastically without degrading the accuracy. The dipole wave scattering from flat rectangular plates is discussed with numerical examples.

  • Uniqueness Theorem of Complex-Valued Neural Networks with Polar-Represented Activation Function

    Masaki KOBAYASHI  

     
    PAPER-Nonlinear Problems

      Vol:
    E98-A No:9
      Page(s):
    1937-1943

    Several models of feed-forward complex-valued neural networks have been proposed, and those with split and polar-represented activation functions have been mainly studied. Neural networks with split activation functions are relatively easy to analyze, but complex-valued neural networks with polar-represented functions have many applications but are difficult to analyze. In previous research, Nitta proved the uniqueness theorem of complex-valued neural networks with split activation functions. Subsequently, he studied their critical points, which caused plateaus and local minima in their learning processes. Thus, the uniqueness theorem is closely related to the learning process. In the present work, we first define three types of reducibility for feed-forward complex-valued neural networks with polar-represented activation functions and prove that we can easily transform reducible complex-valued neural networks into irreducible ones. We then prove the uniqueness theorem of complex-valued neural networks with polar-represented activation functions.

  • Separation of Mass Spectra Based on Probabilistic Latent Component Analysis for Explosives Detection

    Yohei KAWAGUCHI  Masahito TOGAMI  Hisashi NAGANO  Yuichiro HASHIMOTO  Masuyuki SUGIYAMA  Yasuaki TAKADA  

     
    PAPER

      Vol:
    E98-A No:9
      Page(s):
    1888-1897

    A new algorithm for separating mass spectra into individual substances for explosives detection is proposed. In the field of mass spectrometry, separation methods, such as principal-component analysis (PCA) and independent-component analysis (ICA), are widely used. All components, however, have no negative values, and the orthogonality condition imposed on components also does not necessarily hold in the case of mass spectra. Because these methods allow negative values and PCA imposes an orthogonality condition, they are not suitable for separation of mass spectra. The proposed algorithm is based on probabilistic latent-component analysis (PLCA). PLCA is a statistical formulation of non-negative matrix factorization (NMF) using KL divergence. Because PLCA imposes the constraint of non-negativity but not orthogonality, the algorithm is effective for separating components of mass spectra. In addition, to estimate the components more accurately, a sparsity constraint is applied to PLCA for explosives detection. The main contribution is industrial application of the algorithm into an explosives-detection system. Results of an experimental evaluation of the algorithm with data obtained in a real railway station demonstrate that the proposed algorithm outperforms PCA and ICA. Also, results of calculation time demonstrate that the algorithm can work in real time.

  • A Realization of Signal-Model-Based SAR Imaging via Atomic Decomposition

    Yesheng GAO  Hui SHENG  Kaizhi WANG  Xingzhao LIU  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:9
      Page(s):
    1906-1913

    A signal-model-based SAR image formation algorithm is proposed in this paper. A model is used to describe the received signal, and each scatterer can be characterized by a set of its parameters. Two parameter estimation methods via atomic decomposition are presented: (1) applying 1-D matching pursuit to azimuthal projection data; (2) applying 2-D matching pursuit to raw data. The estimated parameters are mapped to form a SAR image, and the mapping procedure can be implemented under application guidelines. This algorithm requires no prior information about the relative motion between the platform and the target. The Cramer-Rao bounds of parameter estimation are derived, and the root mean square errors of the estimates are close to the bounds. Experimental results are given to validate the algorithm and indicate its potential applications.

921-940hit(3945hit)