The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

1121-1140hit(3945hit)

  • A New Hybrid Approach for Privacy Preserving Distributed Data Mining

    Chongjing SUN  Hui GAO  Junlin ZHOU  Yan FU  Li SHE  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:4
      Page(s):
    876-883

    With the distributed data mining technique having been widely used in a variety of fields, the privacy preserving issue of sensitive data has attracted more and more attention in recent years. Our major concern over privacy preserving in distributed data mining is the accuracy of the data mining results while privacy preserving is ensured. Corresponding to the horizontally partitioned data, this paper presents a new hybrid algorithm for privacy preserving distributed data mining. The main idea of the algorithm is to combine the method of random orthogonal matrix transformation with the proposed secure multi-party protocol of matrix product to achieve zero loss of accuracy in most data mining implementations.

  • Performance Improvement of Database Compression for OLTP Workloads

    Ki-Hoon LEE  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E97-D No:4
      Page(s):
    976-980

    As data volumes explode, data storage costs become a large fraction of total IT costs. We can reduce the costs substantially by using compression. However, it is generally known that database compression is not suitable for write-intensive workloads. In this paper, we provide a comprehensive solution to improve the performance of compressed databases for write-intensive OLTP workloads. We find that storing data too densely in compressed pages incurs many future page splits, which require exclusive locks. In order to avoid lock contention, we reduce page splits by sacrificing a couple of percent of space savings. We reserve enough space in each compressed page for future updates of records and prevent page merges that are prone to incur page splits in the near future. The experimental results using TPC-C benchmark and MySQL/InnoDB show that our method gives 1.5 times higher throughput with 33% space savings compared with the uncompressed counterpart and 1.8 times higher throughput with only 1% more space compared with the state-of-the-art compression method developed by Facebook.

  • Method for Reduction of Field Computation Time for Discrete Ray Tracing Method

    Masafumi TAKEMATSU  Junichi HONDA  Yuki KIMURA  Kazunori UCHIDA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E97-C No:3
      Page(s):
    198-206

    This paper is concerned with a method to reduce the computation time of the Discrete Ray Tracing Method (DRTM) which was proposed to numerically analyze electromagnetic fields above Random Rough Surfaces (RRSs). The essence of DRTM is firstly to search rays between source and receiver and secondly to compute electric fields based on the traced rays. In the DRTM, the method discretizes not only RRSs but also ray tracing procedure. In order to reduce computation time for ray searching, the authors propose to modify the conventional algorithm discretizing RRSs with equal intervals to a new one which discretizes them with unequal intervals according to their profiles. The authors also use an approximation of Fresnel function which enables us to reduce field computation time. The authors discuss the reduction rate for computation time of the DRTM from the numerical view points of ray searching and field computation. Finally, this paper shows how much computation time is reduced by the new method.

  • Interference Coordination in 3D MIMO-OFDMA Networks

    Ying WANG  Weidong ZHANG  Peilong LI  Ping ZHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:3
      Page(s):
    674-685

    This paper investigates interference coordination for 3-dimension (3D) antenna array systems in multicell multiple-input multiple-output (MIMO) and orthogonal frequency division multiple-access (OFDMA) wireless networks. Cell-center user and cell-edge user specific downtilts are accordingly partitioned through dynamic vertical beamforming in the 3D MIMO-OFDM communication systems. Taking these user specific downtilts into consideration, the objective of our proposed interference coordination scheme is to maximize both the cell-edge users' and cell-center users' throughput, subject to per base-station (BS) power, cell-center user and cell-edge user specific downtilt constraints. Here, two coordination techniques, consisting of the fractional frequency reuse (FFR) scheme and partial joint process (JP) coordinated multiple point (COMP) transmission mode, are introduced in this paper. To solve the interference coordination problem, two resource block (RB) partitioning schemes are proposed for the above-mentioned coordination techniques accordingly. Based on such RB partitioning, JP CoMP-based dual decomposition method (JC-DDM) and FFR-based dual decomposition method (FDDM) are proposed, where RB assignment, power allocation (RAPA) and downtilts adjustment are jointly optimized. To simplify the computation complexity, a suboptimal algorithm (SOA) is presented to decouple the optimization problem into three subproblems by using FFR scheme. Simulation results show that all of our proposed algorithms outperform the interference coordination scheme with fixed downtilts. JC-DDM and FDDM find the local optimal throughput with different transmission techniques, while SOA iteratively optimize the downtilts and RAPA which shows close-to-optimal performance with much lower computation complexity.

  • Combining Stability and Robustness in Reconstruction Problems via lq (0 < q ≤ 1) Quasinorm Using Compressive Sensing

    Thu L. N. NGUYEN  Yoan SHIN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:3
      Page(s):
    894-898

    Compressive sensing is a promising technique in data acquisition field. A central problem in compressive sensing is that for a given sparse signal, we wish to recover it accurately, efficiently and stably from very few measurements. Inspired by mathematical analysis, we introduce a combining scheme between stability and robustness in reconstruction problems using compressive sensing. By choosing appropriate parameters, we are able to construct a condition for reconstruction map to perform properly.

  • Development of Compression Tolerable and Highly Implementable Watermarking Method for Mobile Devices

    Takeshi KUMAKI  Kei NAKAO  Kohei HOZUMI  Takeshi OGURA  Takeshi FUJINO  

     
    LETTER-Information Network

      Vol:
    E97-D No:3
      Page(s):
    593-596

    This paper reports on the image compression tolerability and high implementability of a novel proposed watermarking method that uses a morphological wavelet transform based on max-plus algebra. This algorithm is suitable for embedded low-power processors in mobile devices. For objective and unified evaluation of the capability of the proposed watermarking algorithm, we focus attention on a watermarking contest presented by the IHC, which belongs to the IEICE and investigate the image quality and tolerance against JPEG compression attack. During experiments for this contest, six benchmark images processed by the proposed watermarking is done to reduce the file size of original images to 1/10, 1/20, or less, and the error rate of embedding data is reduced to 0%. Thus, the embedded data can be completely extracted. The PSNR value is up to 54.66dB in these experiments. Furthermore, when the smallest image size is attained 0.49MB and the PSNR value become about 52dB, the proposed algorithm maintains very high quality with an error rate of 0%. Additionally, the processing time of the proposed watermarking can realize about 416.4 and 4.6 times faster than that of DCT and HWT on the ARM processor, respectively. As a result, the proposed watermarking method achieves effective processing capability for mobile processors.

  • Effective Frame Selection for Blind Source Separation Based on Frequency Domain Independent Component Analysis

    Yusuke MIZUNO  Kazunobu KONDO  Takanori NISHINO  Norihide KITAOKA  Kazuya TAKEDA  

     
    PAPER-Engineering Acoustics

      Vol:
    E97-A No:3
      Page(s):
    784-791

    Blind source separation is a technique that can separate sound sources without such information as source location, the number of sources, and the utterance content. Multi-channel source separation using many microphones separates signals with high accuracy, even if there are many sources. However, these methods have extremely high computational complexity, which must be reduced. In this paper, we propose a computational complexity reduction method for blind source separation based on frequency domain independent component analysis (FDICA) and examine temporal data that are effective for source separation. A frame with many sound sources is effective for FDICA source separation. We assume that a frame with a low kurtosis has many sound sources and preferentially select such frames. In our proposed method, we used the log power spectrum and the kurtosis of the magnitude distribution of the observed data as selection criteria and conducted source separation experiments using speech signals from twelve speakers. We evaluated the separation performances by the signal-to-interference ratio (SIR) improvement score. From our results, the SIR improvement score was 24.3dB when all the frames were used, and 23.3dB when the 300 frames selected by our criteria were used. These results clarified that our proposed selection criteria based on kurtosis and magnitude is effective. Furthermore, we significantly reduced the computational complexity because it is proportional to the number of selected frames.

  • SegOMP: Sparse Recovery with Fewer Measurements

    Li ZENG  Xiongwei ZHANG  Liang CHEN  Weiwei YANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:3
      Page(s):
    862-864

    Presented is a new measuring and reconstruction framework of Compressed Sensing (CS), aiming at reducing the measurements required to ensure faithful reconstruction. A sparse vector is segmented into sparser vectors. These new ones are then randomly sensed. For recovery, we reconstruct these vectors individually and assemble them to obtain the original signal. We show that the proposed scheme, referred to as SegOMP, yields higher probability of exact recovery in theory. It is finished with much smaller number of measurements to achieve a same reconstruction quality when compared to the canonical greedy algorithms. Extensive experiments verify the validity of the SegOMP and demonstrate its potentials.

  • Large-Scale Integrated Circuit Design Based on a Nb Nine-Layer Structure for Reconfigurable Data-Path Processors Open Access

    Akira FUJIMAKI  Masamitsu TANAKA  Ryo KASAGI  Katsumi TAKAGI  Masakazu OKADA  Yuhi HAYAKAWA  Kensuke TAKATA  Hiroyuki AKAIKE  Nobuyuki YOSHIKAWA  Shuichi NAGASAWA  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    INVITED PAPER

      Vol:
    E97-C No:3
      Page(s):
    157-165

    We describe a large-scale integrated circuit (LSI) design of rapid single-flux-quantum (RSFQ) circuits and demonstrate several reconfigurable data-path (RDP) processor prototypes based on the ISTEC Advanced Process (ADP2). The ADP2 LSIs are made up of nine Nb layers and Nb/AlOx/Nb Josephson junctions with a critical current density of 10kA/cm2, allowing higher operating frequencies and integration. To realize truly large-scale RSFQ circuits, careful design is necessary, with several compromises in the device structure, logic gates, and interconnects, balancing the competing demands of integration density, design flexibility, and fabrication yield. We summarize numerical and experimental results related to the development of a cell-based design in the ADP2, which features a unit cell size reduced to 30-µm square and up to four strip line tracks in the unit cell underneath the logic gates. The ADP LSIs can achieve ∼10 times the device density and double the operating frequency with the same power consumption per junction as conventional LSIs fabricated using the Nb four-layer process. We report the design and test results of RDP processor prototypes using the ADP2 cell library. The RDP processors are composed of many arrays of floating-point units (FPUs) and switch networks, and serve as accelerators in a high-performance computing system. The prototypes are composed of two-dimensional arrays of several arithmetic logic units instead of FPUs. The experimental results include a successful demonstration of full operation and reconfiguration in a 2×2 RDP prototype made up of 11.5k junctions at 45GHz after precise timing design. Partial operation of a 4×4 RDP prototype made up of 28.5k-junctions is also demonstrated, indicating the scalability of our timing design.

  • A New Evolutionary Approach to Recommender Systems

    Hyun-Tae KIM  Jinung AN  Chang Wook AHN  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E97-D No:3
      Page(s):
    622-625

    In this paper, a new evolutionary approach to recommender systems is presented. The aim of this work is to develop a new recommendation method that effectively adapts and immediately responds to the user's preference. To this end, content-based filtering is judiciously utilized in conjunction with interactive evolutionary computation (IEC). Specifically, a fitness-based truncation selection and a feature-wise crossover are devised to make full use of desirable properties of promising items within the IEC framework. Moreover, to efficiently search for proper items, the content-based filtering is modified in cooperation with data grouping. The experimental results demonstrate the effectiveness of the proposed approach, compared with existing methods.

  • Multiplexing and Error Control Scheme for Body Area Network Employing IEEE 802.15.6

    Kento TAKABAYASHI  Hirokazu TANAKA  Chika SUGIMOTO  Ryuji KOHNO  

     
    PAPER

      Vol:
    E97-B No:3
      Page(s):
    564-570

    This paper proposes and investigates a multiplexing and error control scheme for Body Area Network (BAN). In February 2012, an international standard of WBAN, IEEE802.15.6, was published and it supports error control schemes. This standard also defines seven different QoS modes however, how to utilize them is not clearly specified. In this paper, an optimization method of the QoS is proposed. In order to utilize the QoS parameters, a multiplexing scheme is introduced. Then, the Hybrid ARQ in IEEE 802.15.6 is modified to employ decomposable codes and Weldon's ARQ protocol for more associations with channel conditions and required QoS. The proposed scheme has higher flexibility for optimizing the QoS parameters according to the required QoS.

  • Scan Shift Time Reduction Using Test Compaction for On-Chip Delay Measurement

    Wenpo ZHANG  Kazuteru NAMBA  Hideo ITO  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:3
      Page(s):
    533-540

    In recent VLSIs, small-delay defects, which are hard to detect by traditional delay fault testing, can bring about serious issues such as short lifetime. To detect small-delay defects, on-chip delay measurement which measures the delay time of paths in the circuit under test (CUT) was proposed. However, this approach incurs high test cost because it uses scan design, which brings about long test application time due to scan shift operation. Our solution is a test application time reduction method for testing using the on-chip path delay measurement. The testing with on-chip path delay measurement does not require capture operations, unlike the conventional delay testing. Specifically, FFs keep the transition pattern of the test pattern pair sensitizing a path under measurement (PUM) (denoted as p) even after the measurement of p. The proposed method uses this characteristic. The proposed method reduces scan shift time and test data volume using test pattern merging. Evaluation results on ISCAS89 benchmark circuits indicate that the proposed method reduces the test application time by 6.89∼62.67% and test data volume by 46.39∼74.86%.

  • A Note on 8-QAM+ Sequences

    Fanxin ZENG  Xiaoping ZENG  Zhenyu ZHANG  Guixin XUAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:3
      Page(s):
    888-893

    This letter presents three methods for producing 8-QAM+ sequences. The first method transforms a ternary complementary sequence set (CSS) with even number of sub-sequences into an 8-QAM+ periodic CSS with both of the period and the number of sub-sequences unaltered. The second method results in an 8-QAM+ aperiodic CSS with confining neither the period nor the number of sub-sequences. The third method produces 8-QAM+ periodic sequences having ideal autocorrelation property on the real part of the autocorrelation function. The proposed sequences can be potentially applied to suppression of multiple access interference or synchronization in a communication system.

  • A Formulation of Composition for Cellular Automata on Groups

    Shuichi INOKUCHI  Takahiro ITO  Mitsuhiko FUJIO  Yoshihiro MIZOGUCHI  

     
    PAPER-Cellular Automata

      Vol:
    E97-D No:3
      Page(s):
    448-454

    We introduce the notion of 'Composition', 'Union' and 'Division' of cellular automata on groups. A kind of notions of compositions was investigated by Sato [10] and Manzini [6] for linear cellular automata, we extend the notion to general cellular automata on groups and investigated their properties. We observe the all unions and compositions generated by one-dimensional 2-neighborhood cellular automata over Z2 including non-linear cellular automata. Next we prove that the composition is right-distributive over union, but is not left-distributive. Finally, we conclude by showing reformulation of our definition of cellular automata on group which admit more than three states. We also show our formulation contains the representation using formal power series for linear cellular automata in Manzini [6].

  • Efficient Update Activation for Virtual Machines in IaaS Cloud Computing Environments

    Hiroshi YAMADA  Shuntaro TONOSAKI  Kenji KONO  

     
    PAPER-Software System

      Vol:
    E97-D No:3
      Page(s):
    469-479

    Infrastructure as a Service (IaaS), a form of cloud computing, is gaining attention for its ability to enable efficient server administration in dynamic workload environments. In such environments, however, updating the software stack or content files of virtual machines (VMs) is a time-consuming task, discouraging administrators from frequently enhancing their services and fixing security holes. This is because the administrator has to upload the whole new disk image to the cloud platform via the Internet, which is not yet fast enough that large amounts of data can be transferred smoothly. Although the administrator can apply incremental updates directly to the running VMs, he or she has to carefully consider the type of update and perform operations on all running VMs, such as application restarts. This is a tedious and error-prone task. This paper presents a technique for synchronizing VMs with less time and lower administrative burden. We introduce the Virtual Disk Image Repository, which runs on the cloud platform and automatically updates the virtual disk image and the running VMs with only the incremental update information. We also show a mechanism that performs necessary operations on the running VM such as restarting server processes, based on the types of files that are updated. We implement a prototype on Linux 2.6.31.14 and Amazon Elastic Compute Cloud. An experiment shows that our technique can synchronize VMs in an order-of-magnitude shorter time than the conventional disk-image-based VM method. Also, we discuss limitations of our technique and some directions for more efficient VM updates.

  • Performance Optimization for Sparse AtAx in Parallel on Multicore CPU

    Yuan TAO  Yangdong DENG  Shuai MU  Zhenzhong ZHANG  Mingfa ZHU  Limin XIAO  Li RUAN  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:2
      Page(s):
    315-318

    The sparse matrix operation, y ← y+AtAx, where A is a sparse matrix and x and y are dense vectors, is a widely used computing pattern in High Performance Computing (HPC) applications. The pattern poses challenge to efficient solutions because both a matrix and its transposed version are involved. An efficient sparse matrix format, Compressed Sparse Blocks (CSB), has been proposed to provide nearly the same performance for both Ax and Atx. We develop a multithreaded implementation for the CSB format and apply it to solve y ← y+AtAx. Experiments show that our technique outperforms the Compressed Sparse Row (CSR) based solution in POSKI by up to 2.5 fold on over 70% of benchmarking matrices.

  • On the Linear Complexity of Quaternary Cyclotomic Sequences with the Period 2pq

    Zu-ling CHANG  Dan-dan LI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:2
      Page(s):
    679-684

    In this paper, one new class of quaternary generalized cyclotomic sequences with the period 2pq over F4 is established. The linear complexity of proposed sequences with the period 2pq is determined. The results show that such sequences have high linear complexity.

  • Low Cost Error Correction for Multi-Hop Data Aggregation Using Compressed Sensing

    Guangming CAO  Peter JUNG  Slawomir STANCZAK  Fengqi YU  

     
    LETTER-Information Network

      Vol:
    E97-D No:2
      Page(s):
    331-334

    Packet loss and energy dissipation are two major challenges of designing large-scale wireless sensor networks. Since sensing data is spatially correlated, compressed sensing (CS) is a promising reconstruction scheme to provide low-cost packet error correction and load balancing. In this letter, assuming a multi-hop network topology, we present a CS-oriented data aggregation scheme with a new measurement matrix which balances energy consumption of the nodes and allows for recovery of lost packets at fusion center without additional transmissions. Comparisons with existing methods show that the proposed scheme offers higher recovery precision and less energy consumption on TinyOS.

  • Security Analysis of Collusion-Resistant Nearest Neighbor Query Scheme on Encrypted Cloud Data

    Youwen ZHU  Tsuyoshi TAKAGI  Rong HU  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E97-D No:2
      Page(s):
    326-330

    Recently, Yuan et al. (IEEE Infocom'13, pp.2652-2660) proposed an efficient secure nearest neighbor (SNN) search scheme on encrypted cloud database. Their scheme is claimed to be secure against the collusion attack of query clients and cloud server, because the colluding attackers cannot infer the encryption/decryption key. In this letter, we observe that the encrypted dataset in Yuan's scheme can be broken by the collusion attack without deducing the key, and present a simple but powerful attack to their scheme. Experiment results validate the high efficiency of our attacking approach. Additionally, we also indicate an upper bound of collusion-resistant ability of any accurate SNN query scheme.

  • Pose-Free Face Swapping Based on a Deformable 3D Shape Morphable Model

    Yuan LIN  Shengjin WANG  

     
    PAPER-Computer Graphics

      Vol:
    E97-D No:2
      Page(s):
    305-314

    Traditional face swapping technologies require that the faces of source images and target images have similar pose and appearance (usually frontal). For overcoming this limit in applications this paper presents a pose-free face swapping method based on personalized 3D face modeling. By using a deformable 3D shape morphable model, a photo-realistic 3D face is reconstructed from a single frontal view image. With the aid of the generated 3D face, a virtual source image of the person with the same pose as the target face can be rendered, which is used as a source image for face swapping. To solve the problem of illumination difference between the target face and the source face, a color transfer merging method is proposed. It outperforms the original color transfer method in dealing with the illumination gap problem. An experiment shows that the proposed face reconstruction method is fast and efficient. In addition, we have conducted experiments of face swapping in a variety of scenarios such as children's story book, role play, and face de-identification stripping facial information used for identification, and promising results have been obtained.

1121-1140hit(3945hit)