The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PAR(2741hit)

841-860hit(2741hit)

  • Parameterization of All Stabilizing Two-Degrees-of-Freedom Simple Repetitive Controllers with Specified Frequency Characteristics

    Tatsuya SAKANUSHI  Jie HU  Kou YAMADA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1384-1392

    The simple repetitive control system proposed by Yamada et al. is a type of servomechanism for periodic reference inputs. This system follows a periodic reference input with a small steady-state error, even if there is periodic disturbance or uncertainty in the plant. In addition, simple repetitive control systems ensure that transfer functions from the periodic reference input to the output and from the disturbance to the output have finite numbers of poles. Yamada et al. clarified the parameterization of all stabilizing simple repetitive controllers. Recently, Yamada et al. proposed the parameterization of all stabilizing two-degrees-of-freedom (TDOF) simple repetitive controllers that can specify the input-output characteristic and the disturbance attenuation characteristic separately. However, when using the method of Yamada et al., it is complex to specify the low-pass filter in the internal model for the periodic reference input that specifies the frequency characteristics. This paper extends the results of Yamada et al. and proposes the parameterization of all stabilizing TDOF simple repetitive controllers with specified frequency characteristics in which the low-pass filter can be specified beforehand.

  • Speaker Adaptation in Sparse Subspace of Acoustic Models

    Yongwon JEONG  

     
    LETTER-Speech and Hearing

      Vol:
    E96-D No:6
      Page(s):
    1402-1405

    I propose an acoustic model adaptation method using bases constructed through the sparse principal component analysis (SPCA) of acoustic models trained in a clean environment. I perform experiments on adaptation to a new speaker and noise. The SPCA-based method outperforms the PCA-based method in the presence of babble noise.

  • Facial Image Super-Resolution Reconstruction Based on Separated Frequency Components

    Hyunduk KIM  Sang-Heon LEE  Myoung-Kyu SOHN  Dong-Ju KIM  Byungmin KIM  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1315-1322

    Super resolution (SR) reconstruction is the process of fusing a sequence of low-resolution images into one high-resolution image. Many researchers have introduced various SR reconstruction methods. However, these traditional methods are limited in the extent to which they allow recovery of high-frequency information. Moreover, due to the self-similarity of face images, most of the facial SR algorithms are machine learning based. In this paper, we introduce a facial SR algorithm that combines learning-based and regularized SR image reconstruction algorithms. Our conception involves two main ideas. First, we employ separated frequency components to reconstruct high-resolution images. In addition, we separate the region of the training face image. These approaches can help to recover high-frequency information. In our experiments, we demonstrate the effectiveness of these ideas.

  • Design and Implementation of Long High-Rate QC-LDPC Codes and Its Applications to Optical Transmission Systems

    Norifumi KAMIYA  Yoichi HASHIMOTO  Masahiro SHIGIHARA  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:6
      Page(s):
    1402-1411

    In this paper, we present a novel class of long quasi-cyclic low-density parity-check (QC-LDPC) codes. Each of the codes in this class has a structure formed by concatenating single-parity-check codes and QC-LDPC codes of shorter lengths, which allows for efficient, high throughput encoder/decoder implementations. Using a code in this class, we design a forward error correction (FEC) scheme for optical transmission systems and present its high throughput encoder/decoder architecture. In order to demonstrate its feasibility, we implement the architecture on a field programmable gate array (FPGA) platform. We show by both FPGA-based simulations and measurements of an optical transmission system that the FEC scheme can achieve excellent error performance and that there is no significant performance degradation due to the constraint on its structure while getting an efficient, high throughput implementation is feasible.

  • A Low Power Tone Recognition for Automatic Tonal Speech Recognizer

    Jirabhorn CHAIWONGSAI  Werapon CHIRACHARIT  Kosin CHAMNONGTHAI  Yoshikazu MIYANAGA  Kohji HIGUCHI  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1403-1411

    This paper proposes a low power tone recognition suitable for automatic tonal speech recognizer (ATSR). The tone recognition estimates fundamental frequency (F0) only from vowels by using a new magnitude difference function (MDF), called vowel-MDF. Accordingly, the number of operations is considerably reduced. In order to apply the tone recognition in portable electronic equipment, the tone recognition is designed using parallel and pipeline architecture. Due to the pipeline and parallel computations, the architecture achieves high throughput and consumes low power. In addition, the architecture is able to reduce the number of input frames depending on vowels, making it more adaptable depending on the maximum number of frames. The proposed architecture is evaluated with words selected from voice activation for GPS systems, phone dialing options, and words having the same phoneme but different tones. In comparison with the autocorrelation method, the experimental results show 35.7% reduction in power consumption and 27.1% improvement of tone recognition accuracy (110 words comprising 187 syllables). In comparison with ATSR without the tone recognition, the speech recognition accuracy indicates 25.0% improvement of ATSR with tone recogntion (2,250 training data and 45 testing words).

  • A Low-Noise High-Dynamic Range Charge Sensitive Amplifier for Gas Particle Detector Pixel Readout LSIs

    Fei LI  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E96-C No:6
      Page(s):
    903-911

    Recent attempts to directly combine CMOS pixel readout chips with modern gas detectors open the possibility to fully take advantage of gas detectors. Those conventional readout LSIs designed for hybrid semiconductor detectors show some issues when applied to gas detectors. Several new proposed readout LSIs can improve the time and the charge measurement precision. However, the widely used basic charge sensitive amplifier (CSA) has an almost fixed dynamic range. There is a trade-off between the charge measurement resolution and the detectable input charge range. This paper presents a method to apply the folding integration technique to a basic CSA. As a result, the detectable input charge dynamic range is expanded while maintaining all the key merits of a basic CSA. Although folding integration technique has already been successfully applied in CMOS image sensors, the working conditions and the signal characteristics are quite different for pixel readout LSIs for gas particle detectors. The related issues of the folding CSA for pixel readout LSIs, including the charge error due to finite gain of the preamplifier, the calibration method of charge error, and the dynamic range expanding efficiency, are addressed and analyzed. As a design example, this paper also demonstrates the application of the folding integration technique to a Qpix readout chip. This improves the charge measurement resolution and expands the detectable input dynamic range while maintaining all the key features. Calculations with SPICE simulations show that the dynamic range can be improved by 12 dB while the charge measurement resolution is improved by 10 times. The charge error during the folding operation can be corrected to less than 0.5%, which is sufficient for large input charge measurement.

  • Parallelization of Computing-Intensive Tasks of SIFT Algorithm on a Reconfigurable Architecture System

    Peng OUYANG  Shouyi YIN  Hui GAO  Leibo LIU  Shaojun WEI  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1393-1402

    Scale Invariant Feature Transform (SIFT) algorithm is a very excellent approach for feature detection. It is characterized by data intensive computation. The current studies of accelerating SIFT algorithm are mainly reflected in three aspects: optimizing the parallel parts of the algorithm based on general-purpose multi-core processors, designing the customized multi-core processor dedicated for SIFT, and implementing it based on the FPGA platform. The real-time performance of SIFT has been highly improved. However, the factors such as the input image size, the number of octaves and scale factors in the SIFT algorithm are restricted for some solutions, the flexibility that ensures the high execution performance under variable factors should be improved. This paper proposes a reconfigurable solution to solve this problem. We fully exploit the algorithm and adopt several techniques, such as full parallel execution, block computation and CORDIC transformation, etc., to improve the execution efficiency on a REconfigurable MUltimedia System called REMUS. Experimental results show that the execution performance of the SIFT is improved by 33%, 50% and 8 times comparing with that executed in the multi-core platform, FPGA and ASIC separately. The scheme of dynamic reconfiguration in this work can configure the circuits to meet the computation requirements under different input image size, different number of octaves and scale factors in the process of computing.

  • Partitioning Trees with Supply, Demand and Edge-Capacity

    Masaki KAWABATA  Takao NISHIZEKI  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1036-1043

    Let T be a given tree. Each vertex of T is either a supply vertex or a demand vertex, and is assigned a positive number, called the supply or demand. Each demand vertex v must be supplied an amount of “power,” equal to the demand of v, from exactly one supply vertex through edges in T. Each edge is assigned a positive number called the capacity. One wishes to partition T into subtrees by deleting edges from T so that each subtree contains exactly one supply vertex whose supply is no less than the sum of all demands in the subtree and the power flow through each edge is no more than capacity of the edge. The “partition problem” is a decision problem to ask whether T has such a partition. The “maximum partition problem” is an optimization version of the partition problem. In this paper, we give three algorithms for the problems. First is a linear-time algorithm for the partition problem. Second is a pseudo-polynomial-time algorithm for the maximum partition problem. Third is a fully polynomial-time approximation scheme (FPTAS) for the maximum partition problem.

  • On The Average Partial Hamming Correlation of Frequency-Hopping Sequences

    Wenli REN  Fang-Wei FU  Zhengchun ZHOU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:5
      Page(s):
    1010-1013

    The average Hamming correlation is an important performance indicator of frequency-hopping sequences (FHSs). In this letter, the average partial Hamming correlation (APHC) properties of FHSs are discussed. Firstly, the theoretical bound on the average partial Hamming correlation of FHSs is established. It works for any correlation window with length 1≤ω≤υ, where υ is the sequence period, and generalizes the bound developed by Peng et al which is valid only when ω=υ. A sufficient and necessary condition for a set of FHSs having optimal APHC for any correlation window is then given. Finally, sets of FHSs with optimal APHC are presented.

  • Transmission Line Coupler Design and Mixer-Based Receiver for Dicode Partial Response Communications

    Tsutomu TAKEYA  Tadahiro KURODA  

     
    PAPER-Circuit Theory

      Vol:
    E96-A No:5
      Page(s):
    940-946

    This paper presents a method of designing transmission line couplers (TLCs) and a mixer-based receiver for dicode partial response communications. The channel design method results in the optimum TLC design. The receiver with mixers and DC balancing circuits reduces the threshold control circuits and digital circuits to decode dicode partial response signals. Our techniques enable low inter-symbol interference (ISI) dicode partial response communications without three level decision circuits and complex threshold control circuits. The techniques were evaluated in a simulation with an EM solver and a transistor level simulation. The circuit was designed in the 90-nm CMOS process. The simulation results show 12-Gb/s operation and 52mW power consumption at 1.2V.

  • A 1.5 Gb/s Highly Parallel Turbo Decoder for 3GPP LTE/LTE-Advanced

    Yun CHEN  Xubin CHEN  Zhiyuan GUO  Xiaoyang ZENG  Defeng HUANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E96-B No:5
      Page(s):
    1211-1214

    A highly parallel turbo decoder for 3GPP LTE/LTE-Advanced systems is presented. It consists of 32 radix-4 soft-in/soft-out (SISO) decoders. Each SISO decoder is based on the proposed full-parallel sliding window (SW) schedule. Implemented in a 0.13 µm CMOS technology, the proposed design occupies 12.96 mm2 and achieves 1.5 Gb/s while decoding size-6144 blocks with 5.5 iterations. Compared with conventional SW schedule, the throughput is improved by 30–76% with 19.2% area overhead and negligible energy overhead.

  • Dynamic Fault Tree Analysis Using Bayesian Networks and Sequence Probabilities

    Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E96-A No:5
      Page(s):
    953-962

    A method of calculating the exact top event probability of a fault tree with dynamic gates and repeated basic events is proposed. The top event probability of such a dynamic fault tree is obtained by converting the tree into an equivalent Markov model. However, the Markov-based method is not realistic for a complex system model because the number of states that should be considered in the Markov analysis increases explosively as the number of basic events in the model increases. To overcome this shortcoming, we propose an alternative method in this paper. It is a hybrid of a Bayesian network (BN) and an algebraic technique. First, modularization is applied to a dynamic fault tree. The detected modules are classified into two types: one satisfies the parental Markov condition and the other does not. The module without the parental Markov condition is replaced with an equivalent single event. The occurrence probability of this event is obtained as the sum of disjoint sequence probabilities. After the contraction of modules without parent Markov condition, the BN algorithm is applied to the dynamic fault tree. The conditional probability tables for dynamic gates are presented. The BN is a standard one and has hierarchical and modular features. Numerical example shows that our method works well for complex systems.

  • RLS-Based On-Line Sparse Nonnegative Matrix Factorization Method for Acoustic Signal Processing Systems

    Seokjin LEE  

     
    LETTER-Engineering Acoustics

      Vol:
    E96-A No:5
      Page(s):
    980-985

    Recursive least squares-based online nonnegative matrix factorization (RLS-ONMF), an NMF algorithm based on the RLS method, was developed to solve the NMF problem online. However, this method suffers from a partial-data problem. In this study, the partial-data problem is resolved by developing an improved online NMF algorithm using RLS and a sparsity constraint. The proposed method, RLS-based online sparse NMF (RLS-OSNMF), consists of two steps; an estimation step that optimizes the Euclidean NMF cost function, and a shaping step that satisfies the sparsity constraint. The proposed algorithm was evaluated with recorded speech and music data and with the RWC music database. The results show that the proposed algorithm performs better than conventional RLS-ONMF, especially during the adaptation process.

  • An Adaptive Model for Particle Fluid Surface Reconstruction

    Fengquan ZHANG  Xukun SHEN  Xiang LONG  

     
    LETTER-Computer Graphics

      Vol:
    E96-D No:5
      Page(s):
    1247-1250

    In this letter, we present an efficient method for high quality surface reconstruction from simulation data of smoothed particles hydrodynamics (SPH). For computational efficiency, instead of computing scalar field in overall particle sets, we only construct scalar field around fluid surfaces. Furthermore, an adaptive scalar field model is proposed, which adaptively adjusts the smoothing length of ellipsoidal kernel by a constraint-correction rule. Then the isosurfaces are extracted from the scalar field data. The proposed method can not only effectively preserve fluid details, such as splashes, droplets and surface wave phenomena, but also save computational costs. The experimental results show that our method can reconstruct the realistic fluid surfaces with different particle sets.

  • Super Resolution TOA Estimation Algorithm with Maximum Likelihood ICA Based Pre-Processing

    Tetsuhiro OKANO  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E96-B No:5
      Page(s):
    1194-1201

    High-resolution time of arrival (TOA) estimation techniques have great promise for the high range resolution required in recently developed radar systems. A widely known super-resolution TOA estimation algorithm for such applications, the multiple-signal classification (MUSIC) in the frequency domain, has been proposed, which exploits an orthogonal relationship between signal and noise eigenvectors obtained by the correlation matrix of the observed transfer function. However, this method suffers severely from a degraded resolution when a number of highly correlated interference signals are mixed in the same range gate. As a solution for this problem, this paper proposes a novel TOA estimation algorithm by introducing a maximum likelihood independent component analysis (MLICA) approach, in which multiple complex sinusoidal signals are efficiently separated by the likelihood criteria determined by the probability density function (PDF) of a complex sinusoid. This MLICA schemes can decompose highly correlated interference signals, and the proposed method then incorporates the MLICA into the MUSIC method, to enhance the range resolution in richly interfered situations. The results from numerical simulations and experimental investigation demonstrate that our proposed pre-processing method can enhance TOA estimation resolution compared with that obtained by the original MUSIC, particularly for lower signal-to-noise ratios.

  • Accurate Permittivity Estimation Method with Iterative Waveform Correction for UWB Internal Imaging Radar

    Ryunosuke SOUMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E96-C No:5
      Page(s):
    730-737

    Ultra-wideband (UWB) pulse radar has high range resolution and permeability in a dielectric medium, and has great potential for the non-destructive inspection or early-stage detection of breast cancer. As an accurate and high-resolution imaging method for targets embedded in a dielectric medium, extended range points migration (RPM) has been developed. Although this method offers an accurate internal target image in a homogeneous media, it assumes the permittivity of the dielectric medium is given, which is not practical for general applications. Although there are various permittivity estimation methods, they have essential problems that are not suitable for clear, dielectric boundaries like walls, or is not applicable to an unknown and arbitrary shape of dielectric medium. To overcome the above drawbacks, we newly propose a permittivity estimation method suitable for various shapes of dielectric media with a clear boundary, where the dielectric boundary points and their normal vectors are accurately determined by the original RPM method. In addition, our method iteratively compensates for the scattered waveform deformation using a finite-difference time domain (FDTD) method to enhance the accuracy of the permittivity estimation. Results from a numerical simulation demonstrate that our method achieves accurate permittivity estimation even for a dielectric medium of wavelength size.

  • Decentralized Equal-Sized Clustering in Sensor Networks

    Takeshi KUBO  Atsushi TAGAMI  Teruyuki HASEGAWA  Toru HASEGAWA  

     
    PAPER

      Vol:
    E96-A No:5
      Page(s):
    916-926

    In forthcoming sensor networks, a multitude of sensor nodes deployed over a large geographical area for monitoring traffic, climate, etc. are expected to become an inevitable infrastructure. Clustering algorithms play an important role in aggregating a large volume of data that are produced continuously by the huge number of sensor nodes. In such networks, equal-sized multi-hop clusters which include an equal number of nodes are useful for efficiency and resiliency. In addition, scalability is important in such large-scale networks. In this paper, we mathematically design a decentralized equal-sized clustering algorithm using a partial differential equation based on the Fourier transform technique, and then design its protocol by discretizing the equation. We evaluated through simulations the equality of cluster sizes and the resiliency against packet loss and node failure in two-dimensional perturbed grid topologies.

  • Partitioned-Tree Nested Loop Join: An Efficient Join for Spatio-Temporal Interval Join

    Jinsoo LEE  Wook-Shin HAN  Jaewha KIM  Jeong-Hoon LEE  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E96-D No:5
      Page(s):
    1206-1210

    A predictive spatio-temporal interval join finds all pairs of moving objects satisfying a join condition on future time interval and space. In this paper, we propose a method called PTJoin. PTJoin partitions the inner index into small sub-trees and performs the join process for each sub-tree to reduce the number of disk page accesses for each window search. Furthermore, to reduce the number of pages accessed by consecutive window searches, we partition the index so that overlapping index pages do not belong to the same partition. Our experiments show that PTJoin reduces the number of page accesses by up to an order of magnitude compared to Interval_STJoin [9], which is the state-of-the-art solution, when the buffer size is small.

  • Iterative Decoding for the Davey-MacKay Construction over IDS-AWGN Channel

    Xiaopeng JIAO  Jianjun MU  Rong SUN  

     
    LETTER-Coding Theory

      Vol:
    E96-A No:5
      Page(s):
    1006-1009

    Turbo equalization is an iterative equalization and decoding technique that can achieve impressive performance gains for communication systems. In this letter, we investigate the turbo equalization method for the decoding of the Davey-MacKay (DM) construction over the IDS-AWGN channels, which indicates a cascaded insertion, deletion, substitution (IDS) channel and an additive white Gaussian noise (AWGN) channel. The inner decoder for the DM construction can be seen as an maximum a-posteriori (MAP) detector. It receives the beliefs generated by the outer LDPC decoder when turbo equalization is used. Two decoding schemes with different kinds of inner decoders, namely hard-input inner decoder and soft-input inner decoder, are investigated. Simulation results show that significant performance gains are obtained for both decoders with respect to the insertion/deletion probability at different SNR values.

  • Dictionary Learning with Incoherence and Sparsity Constraints for Sparse Representation of Nonnegative Signals

    Zunyi TANG  Shuxue DING  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E96-D No:5
      Page(s):
    1192-1203

    This paper presents a method for learning an overcomplete, nonnegative dictionary and for obtaining the corresponding coefficients so that a group of nonnegative signals can be sparsely represented by them. This is accomplished by posing the learning as a problem of nonnegative matrix factorization (NMF) with maximization of the incoherence of the dictionary and of the sparsity of coefficients. By incorporating a dictionary-incoherence penalty and a sparsity penalty in the NMF formulation and then adopting a hierarchically alternating optimization strategy, we show that the problem can be cast as two sequential optimal problems of quadratic functions. Each optimal problem can be solved explicitly so that the whole problem can be efficiently solved, which leads to the proposed algorithm, i.e., sparse hierarchical alternating least squares (SHALS). The SHALS algorithm is structured by iteratively solving the two optimal problems, corresponding to the learning process of the dictionary and to the estimating process of the coefficients for reconstructing the signals. Numerical experiments demonstrate that the new algorithm performs better than the nonnegative K-SVD (NN-KSVD) algorithm and several other famous algorithms, and its computational cost is remarkably lower than the compared algorithms.

841-860hit(2741hit)