The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PAR(2741hit)

1941-1960hit(2741hit)

  • Choosing the Parameter of Image Restoration Filters by Modified Subspace Information Criterion

    Akira TANAKA  Hideyuki IMAI  Masaaki MIYAKOSHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E85-A No:5
      Page(s):
    1104-1110

    Practical image restoration filters usually include a parameter that controls regularizability, trade-off between fidelity of a restored image and smoothness of it, and so on. Many criteria for choosing such a parameter have been proposed. However, the relation between these criteria and the squared error of a restored image, which is usually used to evaluate the restoration performance, has not been theoretically substantiated. Sugiyama and Ogawa proposed the subspace information criterion (SIC) for model selection of supervised learning problems and showed that the SIC is an unbiased estimator of the expected squared error between the unknown model function and an estimated one. They also applied it to restoration of images. However, we need an unbiased estimator of the unknown original image to construct the criterion, so it can not be used for general situations. In this paper, we present a modified version of the SIC as a new criterion for choosing a parameter of image restoration filters. Some numerical examples are also shown to verify the efficacy of the proposed criterion.

  • On H-Coloring Problems with H Expressed by Complements of Cycles, Bipartite Graphs, and Chordal Graphs

    Akihiro UEJIMA  Hiro ITO  

     
    PAPER

      Vol:
    E85-A No:5
      Page(s):
    1026-1030

    Coloring problem is a well-known combinatorial optimization problem of graphs. This paper considers H-coloring problems, which are coloring problems with restrictions such that some pairs of colors can not be used for adjacent vertices. The restriction of adjacent colors can be represented by a graph H, i.e., each vertex represents a color and each edge means that the two colors corresponding to the two end-vertices can be used for adjacent vertices. Especially, H-coloring problem with a complete graph H of order k is equivalent to the traditional k-coloring problem. This paper presents sufficient conditions such that H-coloring problem can be reduced to an H-coloring problem, where H is a subgraph of H. And it shows a hierarchy about classes of H-colorable graphs for any complement graph H of a cycle of order odd n 5.

  • Diagnosability of Butterfly Networks under the Comparison Approach

    Toru ARAKI  Yukio SHIBATA  

     
    PAPER-Graphs and Networks

      Vol:
    E85-A No:5
      Page(s):
    1152-1160

    We consider diagnosability of butterfly networks under the comparison approach proposed by Maeng and Malek. Sengupta and Dahbura discussed characterization of diagnosable systems under the comparison approach, and designed a polynomial time algorithm to identify the faulty processors. However, for a general system, it is not algorithmically easy to determine its diagnosability. This paper proposes two comparison schemes for generating syndromes on butterfly networks, and determine the diagnosability of the network.

  • Recognition of Floorplan by Parametric BSG for Reuse of Layout Design

    Keishi SAKANUSHI  Zhonglin WU  Yoji KAJITANI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E85-A No:4
      Page(s):
    872-879

    In reuse of the VLSI layout design when technology migration takes place, the information to be abstracted from the original design and the data structure to store the information shall be specified. In this paper, they are assumed as the seg-based 4-direction and the parametric BSG, respectively. The parametric BSG is a BSG whose segs are generalized to take any number of units of length. The seg-based 4-direction is the right-of, left-of, above, and below relations between two rooms in accordance with the segs between them. An elegant procedure is given to map the floorplan of the model into a parametric BSG of the minimum size, keeping the abstracted seg-based 4-direction. Merits of the PBSG are discussed and a way of reuse is suggested by illustrative instances. Finally, a superior potential of the parametric BSG as the data structure is discussed empirically.

  • Efficient Diagnosis Algorithms on Butterfly Networks under the Comparison Approach

    Toru ARAKI  Yukio SHIBATA  

     
    PAPER

      Vol:
    E85-A No:4
      Page(s):
    842-848

    In this paper, we study system-level diagnosis under the comparison approach proposed by Maeng and Malek. Sengupta and Dahbura designed an O(n5) time diagnosis algorithm for identifying all faulty nodes in general graphs (n is the number of nodes in a system). We consider diagnosis on a butterfly network BF(k,r) and propose O(k2 n) time diagnosis algorithms for locating all faulty nodes in BF(k,r).

  • A Faster Modular Multiplication Based on Key Size Partitioning for RSA Public-Key Cryptosystem

    Seok-Yong LEE  Yong-Jin JEONG  Oh-Jun KWON  

     
    LETTER-Applications of Information Security Techniques

      Vol:
    E85-D No:4
      Page(s):
    789-791

    We propose a new method that can speed up the modular multiplication by physically partitioning the key size into two slices. By using LSB-first and MSB-first approach on two respective partitioned hardware module in parallel, we reduce the number of iterations in modular multiplication from k to k/2+1 for k-bit operands, and the resulting performance is doubled when contrasted with an implementation purely by LSB-first or MSB-first approach.

  • Dynamic File Prefetching Scheme Based on File Access Patterns in VIA-Based Parallel File System

    Yoon-Young LEE  Chei-Yol KIM  Dae-Wha SEO  

     
    PAPER-Computer Systems

      Vol:
    E85-D No:4
      Page(s):
    714-721

    A parallel file system is normally used to support excessive file requests from parallel applications in a cluster system, whereas prefetching is useful for improving the file system performance. This paper proposes dynamic file prefetching scheme based on file access patterns, named table-comparison prefetching policy, that is particularly suitable for parallel scientific applications and multimedia web services in a VIA-based parallel file system. VIA relieves the communication overhead of traditional communication protocols, such as TCP/IP. The proposed policy introduces a table-comparison method to predict data for prefetching. In addition, it includes an algorithm to determine whether and when prefetching is performed using the current available I/O bandwidth. Experimental results confirmed that the use of the proposed prefetching policy in a VIA-based parallel file system produced a higher file system performance for various file access patterns.

  • Adaptive Control Algorithm of ESPAR Antenna Based on Stochastic Approximation Theory

    Blagovest SHISHKOV  Jun CHENG  Takashi OHIRA  

     
    PAPER-Antenna and Propagation

      Vol:
    E85-B No:4
      Page(s):
    802-811

    The electronically steerable passive array radiator (ESPAR) antenna is one kind of the parasitic elements based single-port output antennas with several variable reactances. It performs analog aerial beamforming and none of the signals on its passive elements can be observed. This fact and one that is more important--the nonlinear dependence of the output of the antenna from adjustable reactances--makes the problem substantially new and not resolvable by means of conventional adaptive array beamforming techniques. A novel approach based on stochastic approximation theory is proposed for the adaptive beamforming of the ESPAR antenna as a nonlinear spatial filter by variable parameters, thus forming both beam and nulls. Two learning rate schedule were examined about output SINR, stability, convergence, misadjustment, noise effect, bias term, etc., and the optimal one was proposed. Further development was traced. Our theoretic study, simulation results and performance analysis show that the ESPAR antenna can be controlled effectively, has strong potential for use in mobile terminals and seems to be very perspective.

  • Josephson and Quasiparticle Tunneling in Anisotropic High-Tc d-Wave Superconductors

    Ienari IGUCHI  Takuya IMAIZUMI  Tomoyuki KAWAI  Yukio TANAKA  Satoshi KASHIWAYA  

     
    INVITED PAPER-Novel Devices and Device Physics

      Vol:
    E85-C No:3
      Page(s):
    789-796

    We report the measurements on the ramp-edge type Josephson and quasiparticle tunnel junctions with the different interface angle geometry using high-Tc YBa2Cu3O7-y (YBCO) electrodes. The YBCO/I/Ag tunnel junctions with different crystal-interface boundary angles are fabricated for the investigation of zero bias conductance peak. The angle dependent zero bias conductance peak typical to a dx2-y2-wave superconductor is observable. For Josephson junctions, YBCO ramp-edge junctions with different ab-plane electrodes relatively rotated by 45are fabricated using a CeO2 seed-layer technique. The temperature dependence of the maximum Josephson current for YBCO/PBCO/YBCO junctions (PBCO: PrBa2Cu3O7-y) exhibits angle-dependent behavior, qualitatively different from the Ambegaokar-Baratoff prediction. Under microwave irradiation of 9 GHz, the Shapiro steps appear at integer and/or half integer multiples of the voltage satisfying Josephson voltage-frequency relation, whose behavior depends on the sample angle geometry. The results are reasonably interpreted by the dx2-y2-wave theory by taking the zero energy state into account.

  • An Improvement of Network-Flow Based Multi-Way Circuit Partitioning Algorithm

    Kengo R. AZEGAMI  Masato INAGI  Atsushi TAKAHASHI  Yoji KAJITANI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E85-A No:3
      Page(s):
    655-663

    In this paper, we propose an improved network-flow based multi-way circuit partitioning algorithm whose objective is to minimize the number of sub-circuits. It iteratively extracts a size-maximal feasible sub-circuit one at a time. In our approach, two devices are applied. One is in the use of an exact min-cut graph, and the other is in the idea of keeping the number of I/O pins of the residual circuit as small as possible after one-time extraction. We implemented our algorithm in C for experiments, and tested it with several industrial cases and MCNC benchmarks. Compared to the known approach, we observed more than 10% reduction in average of the sub-circuit number.

  • Lymph-Node Detection System Using a High Tc SQUID and Ultra-Small Particles

    Saburo TANAKA  Takahiro MIZOGUCHI  Hajime OTA  Yoichi KONDO  

     
    PAPER-SQUIDs and Their Applications

      Vol:
    E85-C No:3
      Page(s):
    687-690

    Lymph-node detection system using a high Tc SQUID and ultra-small particles was proposed. Pseudo lymph nodes containing small iron particles were made and the magnetic signal was measured. The SQUID signal was proportional to the weight of the iron in the fluid. At the distance of 20 mm, the detectable minimum weight of the iron was 40 µg. We demonstrated that the possibility of the application of the system to the human body.

  • Design and Demonstration of Pipelined Circuits Using SFQ Logic

    Akira AKAHORI  Akito SEKIYA  Takahiro YAMADA  Akira FUJIMAKI  Hisao HAYAKAWA  

     
    PAPER-Digital Devices and Their Applications

      Vol:
    E85-C No:3
      Page(s):
    641-644

    We have designed the Half Adder (HA) circuit and the Carry Save Serial Adder (CSSA) circuit based on pipeline architecture. Our HA has the structure of a two-stage pipeline and consists of 160 Josephson Junctions (JJs). Our CSSA has the structure of a four-stage pipeline with a feedback loop and consists of 360 JJs. These circuits were fabricated by the NEC standard process. There are two issues which should be considered in the design. One is parameter spreads generated by the fabrication process and the other is leakage currents between the gates. We have introduced a parameter optimization method to deal with the parameter spreads. We have also inserted three stages of JTLs to reduce leakage currents. We have experimentally confirmed the correct operations of these circuits. The obtained bias margins were 33.1% for the HA and 24.6% for the CSSA.

  • A Novel Architecture for MIMO Spatio-Temporal Channel Sounder

    Kei SAKAGUCHI  Jun-ichi TAKADA  Kiyomichi ARAKI  

     
    PAPER-Digital Transmission

      Vol:
    E85-C No:3
      Page(s):
    436-441

    Implementation of Multi-Input Multi-Output (MIMO) channel sounder is considered, taking hardware cost and realtime measurement into account. A remarkable difference between MIMO and conventional Single-Input Multi-Output (SIMO) channel sounding is that the MIMO sounder needs some kind of multiplexing to distinguish transmitting antennas. We compared three types of multiplexing TDM, FDM, and CDM for the sounding purpose, then we chose FDM based technique to achieve cost effectiveness and realtime measurement. In the framework of FDM, we have proposed an algorithm to estimate MIMO channel parameters. Furthermore the proposed algorithm was implemented into the hardware, and the validity of the proposed algorithm was evaluated through measurements in an anechoic chamber.

  • Adaptive Beamforming of ESPAR Antenna--Unconventional Approach

    Blagovest SHISHKOV  Jun CHENG  Takashi OHIRA  

     
    PAPER-Digital Transmission

      Vol:
    E85-C No:3
      Page(s):
    452-457

    The electronically steerable passive array radiator (ESPAR) antenna performs analog aerial beamforming that has only a single-port output and none of the signals on its passive elements can be observed. This fact and one that is more important--the highly nonlinear dependence of the output of the antenna from adjustable reactances--makes the problem substantially new and not resolvable by means of conventional adaptive array beamforming techniques. A novel approach based on stochastic approximation theory is proposed for the adaptive beamforming of the ESPAR antenna as a nonlinear spatial filter by variable parameters, thus forming both beam and nulls. Our theoretic study, simulation results and performance analysis show that the ESPAR antenna can be controlled effectively, has strong potential for use in mobile terminals and seems to be very perspective.

  • Phase Tracking System for Ultra Narrow Bandwidth Applications

    Martin T. HILL  Antonio CANTONI  

     
    PAPER-Circuit

      Vol:
    E85-C No:3
      Page(s):
    558-565

    Recent advances make it possible to mitigate a number of drawbacks of conventional phase locked loops. These advances permit the design of phase tracking system with much improved characteristics that are sought after in modern communication system applications. A new phase tracking system is outlined which reduces the effects of VCO phase noise to an insignificant level. This fact permits extremely narrow bandwidth phase tracking systems to be realized, even when a VCO with poor phase noise characteristics is employed. The improvement in performance over conventional phase locked loops is analyzed. The new phase tracking system also has other benefits such as precise centre frequency and elimination of peaking in the transfer function. To implement the phase tracking system requires a frequency measurement. We outline a new highly integrated frequency measurement method suitable for narrow bandwidth applications. Experimental results from a prototype confirms theoretical results.

  • (M+1)st-Price Auction Protocol

    Hiroaki KIKUCHI  

     
    PAPER-Information Security

      Vol:
    E85-A No:3
      Page(s):
    676-683

    This paper presents some new protocols for (M+1)st-price auction, a style of auction in which the highest M bidders win and pay a uniform price, determined by the (M+1)st price. A set of distributed servers collaborates to resolve the (M+1)st price without revealing any information in terms of bids including the winners' bids. A new trick to jointly and securely compute the highest value as a degree of distributed polynomials is introduced. The building block requires just one round for bidders to cast bids and one round for auctioneers to determine the winners.

  • HTS Quasi-Particle Injection Devices for Interfaces between SFQ and CMOS Circuits

    Hidehiro SHIGA  Yoichi OKABE  

     
    PAPER-Digital Devices and Their Applications

      Vol:
    E85-C No:3
      Page(s):
    650-653

    We have fabricated a prototype of interface devices between SFQ and CMOS circuits using HTS quasi-particle injection devices. By the injection of quasi-particles, the bridge area becomes resistive and high voltage appears at the drain electrode. As a test of device operation, we applied the signal of a function generator to the gate electrode and observed that the device successfully repeated on/off operation. We also succeeded in explaining the device characteristics by considering the thermal effects.

  • Split-Step Wavelet Collocation Method for Nonlinear Optical Pulse Propagation

    Tristan KREMP  Alexander KILLI  Andreas RIEDER  Wolfgang FREUDE  

     
    PAPER-Optical Transmission Radio on Fiber

      Vol:
    E85-C No:3
      Page(s):
    534-543

    With the emerging technology of photonic networks, careful design becomes necessary to make most of the already installed fibre capacity. Appropriate numerical tools are readily available. Usually, these are based on the split-step Fourier method (SSFM), employing the fast Fourier transform (FFT). With N discretization points, the complexity of the SSFM is O(N log2N). For real-world wavelength division multiplexing (WDM) systems, the simulation time can be of the order of days, so any speed improvement would be most welcome. We show that the SSFM is a special case of the so-called collocation method with harmonic basis functions. However, for modelling nonlinear optical waveguides, various other basis function systems offer significant advantages. For calculating the propagation of single soliton-like impulses, a problem-adapted Gauss-Hermite basis leads to a strongly reduced computation time compared to the SSFM . Further, using a basis function system constructed from a scaling function, which generates a compactly supported wavelet, we developed a new and flexible split-step wavelet collocation method (SSWCM). This technique is independent of the propagating impulse shapes, and provides a complexity of the order O(N) for a fixed accuracy. For a typical modelling situation with up to 64 WDM channels, the SSWCM leads to significantly shorter computation times than the standard SSFM.

  • Linear Electroabsorption Modulation for Radio on Fiber Systems

    Sang-Kook HAN  Duk-Ho JEON  Hyun-Do JUNG  

     
    PAPER-Optical Transmission Radio on Fiber

      Vol:
    E85-C No:3
      Page(s):
    527-533

    Two novel linearization processes in electro-absorption-modulator (EAM) are proposed and demonstrated. These two modulation schemes are used to compensate the nonlinear component of the EAM by controlling the DC bias voltages of the each EAM separately. The simulations on the nonlinearity of EAM and linearization process are performed in both time and frequency domains. From a serially cascaded modulation simulation, a reduction of 16 dB in IMD3, 45 dB in IMD5 and the following increase of 15 dB in linear dynamic rage (LDR) are achieved. In dual-parallel modulation experiment at 8 GHz, a reduction of 23 dB in IMD3 and the following increase of 15.1 dB in LDR of are achieved compared to those of a single EAM operation.

  • A Near-Optimum Parallel Algorithm for Bipartite Subgraph Problem Using the Hopfield Neural Network Learning

    Rong-Long WANG  Zheng TANG  Qi-Ping CAO  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E85-A No:2
      Page(s):
    497-504

    A near-optimum parallel algorithm for bipartite subgraph problem using gradient ascent learning algorithm of the Hopfield neural networks is presented. This parallel algorithm, uses the Hopfield neural network updating to get a near-maximum bipartite subgraph and then performs gradient ascent learning on the Hopfield network to help the network escape from the state of the near-maximum bipartite subgraph until the state of the maximum bipartite subgraph or better one is obtained. A large number of instances have been simulated to verify the proposed algorithm, with the simulation result showing that our algorithm finds the solution quality is superior to that of best existing parallel algorithm. We also test the proposed algorithm on maximum cut problem. The simulation results also show the effectiveness of this algorithm.

1941-1960hit(2741hit)