Shimpei SATO Kano AKAGI Atsushi TAKAHASHI
Routing problems derived from silicon-interposer and etc. are often formulated as a set-pair routing problem where the combination of pin-pairs to be connected is flexible. In this routing problem, a length matching routing pattern is often required due to the requirement of the signal propagation delays be the same. We propose a fast length matching routing method for the set-pair routing problem. The existing algorithm generates a good length matching routing pattern in practical time. However, due to the limited searching range, there are length matching routing patterns that cannot find due to the limited searching range of the algorithm. Also, it needs heavy iterative steps to improve a solution, and the computation time is practical but not fast. In the set-pair routing, although pin-pairs to be connected is flexible, it is expected that combinations of pin-pairs which realize length matching are restricted. In our method, such a combination of pin-pairs is selected in advance, then routing is performed to realize the connection of the selected pin-pairs. Heavy iterative steps are not used for both the selection and the routing, then a routing pattern is generated in a short time. In the experiments, we confirm that the quality of routing patterns generated by our method is almost equivalent to the existing algorithm. Furthermore, our method finds length matching routing patterns that the existing algorithm cannot find. The computation time is about 360 times faster than the existing algorithm.
We present a seven-bit multilayer true-time delay (TTD) circuit operating from 1 to 7GHz for wideband phased array antennas. By stacking advanced substrates with low dielectric loss, the TTD with PCB process is miniaturized and has low insertion loss. The signal vias with surrounding ground vias are designed to provide impedance matching throughout the band, allowing the overall group delay to be flat. The standard deviation of the TTD for all states is below 19ps, which is 1.87% of the maximum group delay. The maximum delay is 1016ps with resolution of 8ps. The implemented TTD is 36.6×19.4mm2 and consumes 0.65mW at 3.3V supply for all the delay states. The measured input/output return loss is better than 12.1dB for the band of 1-7GHz.
Omar Faruk RASEL Akira YAMAUCHI Takaaki ISHIGURE
This paper introduces a formation method for 3-dimensional 6 ch.×6 ch. shuffling structures with graded-index (GI) circular core in a multimode polymer optical waveguide for optical printed circuit boards (OPCBs) using a unique photomask-free fabrication technique named the Mosquito method. The interchannel pitch of the fabricated waveguides is 250µm, where all the channels consist of both horizontal and vertical bending structures and the last 6 channels in parallel cross over the first 6 channels. We also report 3-dimensional S-shaped polymer waveguides. In the S-shaped waveguides, the first and last 6 channels with both horizontal and vertical core bending composing the above 3-dimensional shuffling waveguide are separated, in order to evaluate the effect of over-crossing on the loss. It is experimentally confirmed that there is no excess insertion loss due to the shuffling structure in the 3-D shuffling waveguide. The evaluated crosstalk of the 3-D shuffling waveguide is lower than -30dB. The 3-D shuffling waveguide proposed in this paper will be a promising component to achieve high bandwidth density wiring for on-board optical interconnects.
Yuta NAKATANI Atsushi TAKAHASHI
In the routing design of interposer and etc., the combination of a pin pair to be connected by wire is often flexible, and the reductions of the total wire length and the length difference are pursued to keep the circuit performance. Even though the total wire length can be minimized by finding a minimum cost maximum flow in set pair routing problems, the length difference is often large, and the reduction of it is not easy. In this paper, an algorithm that reduces the length difference while keeping the total wire length small is proposed. In the proposed algorithm, an initial routing first obtained by a minimum cost maximum flow. Then it is modified to reduce the maximum length while keeping the minimum total wire length, and a connection of the minimum length is detoured to reduce the length difference. The effectiveness of the proposed algorithm is confirmed by experiments.
Umberto PAOLETTI Yasumaro KOMIYA Takashi SUGA Hideki OSAKA
Power supply noise generated by integrated circuits is one of the major sources of electromagnetic radiation from printed circuit boards (PCB). The reduction of power supply noise can be realized by means of devices that bypass the current among power supply planes, such as bypass capacitors and ground vias. In the present work, the effect of current bypass devices on the far field radiation from multilayer PCBs is represented in terms of the ratio between the far field after and before their introduction, and it is estimated by means of the power transported by the ‘radiation effective forward wave’ in infinite power supply planes. This approach is computationally very efficient and yelds improved EMC designs for power supply planes in realistic PCBs, for example by selecting the position of stitching ground vias. The results are confirmed by a comparison with commercial tools. Forward wave analysis can be used also to study the vertical distribution of the power supply noise in multilayer PCBs. This allows to understand some important noise propagation mechanisms that are related to power and signal integrity as well, and to take low-cost countermeasures at early stage of PCB design.
Shunjiro FUJII Takanori OKUKAWA Zongfan DUAN Yuichiro YANAGI Masaya OHZEKI Tatsuki YANAGIDATE Yuki ARAI Gaoyang ZHAO Yasushiro NISHIOKA Hiromichi KATAURA
We characterized bulk-heterojunction (BHJ) solar cells using a new phenylene-thiophene oligomer, 3,7-bis[5-(4-n-hexylphenyl)-2-thienyl]dibenzothiophene-5,5-dioxide (37HPTDBTSO), and phenyl-C61-butyric-acid methyl ester (PCBM). Their photovoltaic properties including current-voltage characteristics and spectrum response were investigated. It was found that 37HPTDBTSO is appraised to be valuable electron donor. The characteristics of BHJ solar cells using mixed two donors of 37HPTDBTSO and a polymer of poly(3-hexylthiophene) (P3HT) were further investigated. OSC using the blend film of mixed donars and PCBM achieved a power conversion efficiency of 0.89%.
Yukihide KOHIRA Atsushi TAKAHASHI
Due to the increase of operation frequency in recent LSI systems, signal propagation delays are required to achieve specifications with very high accuracy. In order to achieve the severe requirements, signal propagation delay is taken into account in the routing design of PCB (Printed Circuit Board). In the routing design of PCB, the controllability of wire length is often focused on since it enables us to control the routing delay. In this paper, we propose CAFE router which obtains routes of multiple nets with target wire lengths for single layer routing grid with obstacles. CAFE router extends the route of each net from a terminal to the other terminal greedily so that the wire length of the net approaches its target wire length. Experiments show that CAFE router obtains the routes of nets with small length error in short time.
Francescaromana MARADEI Spartaco CANIGGIA Nicola INVERARDI Mario ROTIGNI
This paper provides an investigation of power distribution network (PDN) performance by a full-wave prediction tool and by experimental measurements. A set of six real boards characterized by increasing complexity is considered in order to establish a solid base for behaviour understanding of printed circuit boards. How the growing complexity impacts on the board performance is investigated by measurements and by simulations. Strengths and weakness of PDN modeling by the full-wave software tool Microwave Studio are highlighted and discussed.
Tzong-Lin WU Jun FAN Francesco de PAULIS Chuen-De WANG Antonio Ciccomancini SCOGNA Antonio ORLANDI
Noise coupling on the power distribution networks (PDN) or between PDN and signal traces is becoming one of the main challenges in designing above GHz high-speed digital circuits. Developing an efficient and accurate modeling method is essential to understand the noise coupling mechanism and then solve the problem afterwards. In addition, development of new noise mitigation technology is also important for future high-speed circuit systems. In this invited paper, a novel modeling methodology that is based on the physics-based equivalent circuit model will be introduced, and an example of multiple layer PCB circuits will be modeled and validated with good accuracy. Based on the periodic structure concept, several new electromagnetic bandgap structures (EBG), such as coplanar EBG, photonic crystal power layer (PCPL), and ground surface perturbation lattice (GSPL), will be introduced for the mitigation of power/ground noise. The trade/offs of all these structures will be discussed.
Yukihide KOHIRA Suguru SUEHIRO Atsushi TAKAHASHI
In recent VLSI systems, signal propagation delays are requested to achieve the specifications with very high accuracy. In order to meet the specifications, the routing of a net often needs to be detoured in order to increase the routing delay. A routing method should utilize a routing area with obstacles as much as possible in order to realize the specifications of nets simultaneously. In this paper, a fast longer path algorithm that generates a path of a net in routing grid so that the length is increased as much as possible is proposed. In the proposed algorithm, an upper bound for the length in which the structure of a routing area is taken into account is used. Experiments show that our algorithm utilizes a routing area with obstacles efficiently.
Tohlu MATSUSHIMA Tetsushi WATANABE Yoshitaka TOYOTA Ryuji KOGA Osami WADA
Placing a guard trace next to a signal line is the conventional technique for reducing the common-mode radiation from a printed circuit board. In this paper, the suppression of common-mode radiation from printed circuit boards having guard traces is estimated and evaluated using the imbalance difference model, which was proposed by the authors. To reduce common-mode radiation further, a procedure for designing a transmission line with guard traces is proposed. Guard traces connected to a return plane through vias are placed near a signal line and they decrease a current division factor (CDF). The CDF represents the degree of imbalance of a transmission line, and a common-mode electromotive force depends on the CDF. Thus, by calculating the CDF, we can estimate the reduction in common-mode radiation. It is reduced not only by placing guard traces, but also by narrowing the signal line to compensate for the variation in characteristic impedance due to the guard traces. Experimental results showed that the maximum reduction in common-mode radiation was about 14 dB achieved by placing guard traces on both sides of the signal line, and the calculated reduction agreed with the measured one within 1 dB. According to the CDF and characteristic impedance calculations, common-mode radiation can be reduced by about 25 dB while keeping the characteristic impedance constant by changing the gap between the signal line and the guard trace and by narrowing the width of the signal line.
Kenji ARAKI Fengchao XIAO Yoshio KAMI
To evaluate frequency-domain interference between orthogonally intersecting stripline geometries, a lumped mutual capacitance was incorporated into a circuit model, and then a simplified circuit was proposed in the previous paper. The circuit model was approximated from an investigation of the distribution of mutual capacitance but it has remained how the capacitance is approximated. In this paper, a technique using an error function is proposed for the problem. Then, the time-domain response in an analytical expression is studied using the simplified circuit model in a Laplace transformation to make the mechanism clear. Comparing the experimental and the computed results verifies the proposed models.
Sumito KATO Qiang CHEN Kunio SAWAYA
Current distribution on a 2-layer PCB with lumped circuits is estimated by measuring the near electric field. In this method, the current estimation model is made without considering the electrical parameters of lumped circuits. Experimental results are demonstrated and compared with the numerical results, confirming the validity of this method.
Terutaka TAMAI Yasushi SAITOH Yasuhiro HATTORI Hirosaka IKEDA
Characteristics of conductive elastomer that is composed of silicone rubber and dispersed carbon black particles show conductive and elastic properties in one simple material. This material has been widely applied to make-break contacts of panel switches and connectors of liquid crystal panels. However, since surface state of the contact is very soft, it is difficult to remove contaminant films of contaminated opposite side contact surface and to obtain low contact resistance owing to break the film. This is an important problem to be solved not only for the application of make-break switching contact but also static connector contacts. This study has been conducted to examine some complex structures of the elastomer which indicate removal characteristics for contaminant films and low contact resistance. As specimens, six different types of elastomer contacts composed of different type of dispersed materials as carbon and metal fibers, metal mesh, and plated surfaces were used. The contacts of opposite side were Au and Sn plated contact surface on a printed circuit board (PCB) which is usually used in the static connector and make-break contacts. In order to contaminate contact surfaces of PCB, the surfaces were subjected to exposure in an SO2 gas environment. The elastomeric contacts contained hard materials showed lower contact resistance than only dispersed carbon particles in the elastomer matrix for both contaminated PCB contact surfaces.
The spatial distribution of the electric field in the low to high frequency bands radiated from printed circuit board (PCB) should be estimated continuously from near to far field. The characteristic of the electric field distribution is analyzed by the FDTD-multiple analysis space (FDTD-MAS) method, which can analyze from near to far field continuously, and compared with measured results. Since the analyzed electric field distribution is good agreement with measured results, it is suggested that the continuous distribution for electric field from near to far field can be calculated by the FDTD-MAS method. The electric field at low frequency is larger than that at high frequency within 1 m.
Motoshi TANAKA Hisashi TAKITA Hiroshi INOUE
The effect of a grounded conductive sheet placed over a PCB with a microstrip line on the electromagnetic noise shielding is discussed experimentally and with FDTD modeling. The grounding position of the sheet, which is connected with the ground plane of PCB, is changed. In results, the resonance frequency is shifted by the grounding position, and reducing the resonance of the input impedance should make a more effective shielding for EM noise radiation below 1 GHz.
Sang Wook PARK Jae Cheol JU Dong Chul PARK
In this paper, crosstalk between multiconductor transmission lines of finite length in arbitrary directions on a printed circuit board is studied by using a circuit-concept approach. The circuit-concept approach of (2+1) finite-length lines is expanded for the crosstalk calculation of (n+1) lines where n>2.2n-port network expression is derived from the modified telegrapher equations. The effect of via currents flowing through the vertical short line sections at the line terminals is also investigated. Due to this expansion the derived equations for (n+1) lines are expected to be easily applied for crosstalk analysis of a variety of complex structures such as via fences and guard traces, etc.
Yoshiki KAYANO Motoshi TANAKA Hiroshi INOUE
It has been demonstrated that a common-mode (CM) current can dominate the EMI processes up to 1 GHz, despite the fact that a CM current is smaller than a differential-mode (DM) current. However, this description is insufficient to describe behavior above 1 GHz. In this paper, the correspondence of CM and DM components for total electromagnetic (EM) radiation from a printed circuit board (PCB) with surface microstrip line, which is commonly used in microwave integrated circuits, at gigahertz frequency is studied experimentally and with finite-difference time-domain (FDTD) modeling. In order to characterize the EM radiation, the frequency response of the CM current, the electric field near the PCB, and the electric far field are investigated. First, the frequency response of the CM current, near and far-fields for the PCB with an attached feed cable are compared up to 5 GHz. Although the CM current decreases above a few gigahertz, near and far electric fields increase as the frequency becomes higher. Second, in order to distinguish between CM and DM radiation at high frequency, the frequency response and the angle pattern of the far-field from a PCB without the feed cable are discussed. The results show that radiation up to 1 GHz is related to the CM component. However, depending on polarization and PCB geometry, radiation may be dominated by the DM rather than the CM component. The results indicate that the DM component may be more significant relative to the CM component, and the increase in EM radiation can not be predicted from only the frequency response of CM current. Therefore, identifying the dominant component is essential for suppressing the EM radiation. This study is a basic consideration to realize a technique which is effective on the suppression of the EM radiation from the PCB with an attached feed cable.
Yoshiki KAYANO Motoshi TANAKA Hiroshi INOUE
Electromagnetic (EM) radiation from a feed cable attached to a printed circuit board (PCB), which is commonly encountered electromagnetic interference (EMI) problem at high-speed electronic PCB designs, is investigated by experimental and finite-difference time-domain (FDTD) modeling. In this paper, we propose and demonstrate a guard-band structure as a method for suppressing the EM radiation from a PCB with a feed cable. A signal trace is located between two ground traces (guard-band: GB). Four different cross-sectional PCB structures, which are commonly used in microwave integrated circuits as typical structures, are used to compare the guard-band structure. Frequency response of common-mode (CM) current, electric field near a PCB, and far electric field (radiated emission) are investigated as characteristics of the EMI. Results show that the shield structure is effective in suppressing the CM current at lower frequency. However, structures in which a conductive plate exists near the signal trace yield resonances with high level peak on CM current, near and far-field. On the other hand, the guard-band structure is more effective than other structures in suppressing the EM radiation in the considered frequency range. Therefore the guard-band will be effective for high-density PCB packaging with high-speed traces.
Akira SAITOU Kazuhiko HONJO Kenichi SATO Toyoko KOYAMA Koichi WATANABE
Microwave circuits embedded in a multi-layer resin PCB are demonstrated using low loss resin materials. Resin materials for microwave frequencies were compared with conventional FR-4 with respect to dielectric and conductor loss factors, which proved that losses could be reduced drastically with the low loss material and design optimizations. Baluns, switches and BPFs were designed and fabricated to estimate microwave performances. Measured and simulated insertion losses of the circuits for 2.5 GHz band, were 0.3 dB for a switch, 0.4 dB for a balun and 2.0 dB for a 3-stage Chebyshev BPF. An integration of a switch, a BPF and two baluns was successfully implemented in a multi-layer PCB. Insertion losses of the fabricated integrated circuit were less than 3 dB with 0.1 dB additional loss compared with a sum of individual circuit losses. With estimated results of temperature characteristics and reliability as well as low loss performances, microwave circuits in resin PCBs can be considered as a viable candidate for microwave equipments.