The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

2001-2020hit(6809hit)

  • Two-Microphone Noise Reduction Using Spatial Information-Based Spectral Amplitude Estimation

    Kai LI  Yanmeng GUO  Qiang FU  Junfeng LI  Yonghong YAN  

     
    PAPER-Speech and Hearing

      Vol:
    E95-D No:5
      Page(s):
    1454-1464

    Traditional two-microphone noise reduction algorithms to deal with highly nonstationary directional noises generally use the direction of arrival or phase difference information. The performance of these algorithms deteriorate when diffuse noises coexist with nonstationary directional noises in realistic adverse environments. In this paper, we present a two-channel noise reduction algorithm using a spatial information-based speech estimator and a spatial-information-controlled soft-decision noise estimator to improve the noise reduction performance in realistic non-stationary noisy environments. A target presence probability estimator based on Bayes rules using both phase difference and magnitude squared coherence is proposed for soft-decision of noise estimation, so that they can share complementary advantages when both directional noises and diffuse noises are present. Performances of the proposed two-microphone noise reduction algorithm are evaluated by noise reduction, log-spectral distance (LSD) and word recognition rate (WRR) of a distant-talking ASR system in a real room's noisy environment. Experimental results show that the proposed algorithm achieves better noises suppression without further distorting the desired signal components over the comparative dual-channel noise reduction algorithms.

  • Resource Allocation for Interference Avoidance in OFDMA-TDD Based Femtocell Networks

    IlKwon CHO  Se-Jin KIM  Choong-Ho CHO  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:5
      Page(s):
    1886-1889

    In this letter, we propose a novel resource allocation scheme to enhance downlink system performance for orthogonal frequency division multiple access (OFDMA) and time division duplex (TDD) based femtocell networks. In the proposed scheme, the macro base station (mBS) and femto base stations (fBSs) service macro user equipments (mUEs) and femto user equipments (fUEs) in inner and outer zones in different periods to reduce interference substantially. Simulations show the proposed scheme outperforms femtocell networks with fractional frequency reuse (FFR) systems in terms of the system capacity and outage probability for mUEs and fUEs.

  • Digital Compensation of IQ Imbalance for Dual-Carrier Double Conversion Receivers

    Chester Sungchung PARK  Fitzgerald Sungkyung PARK  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:5
      Page(s):
    1612-1619

    A receiver architecture and a digital IQ imbalance compensation method for dual-carrier reception are newly proposed. The impact of IQ imbalance on the baseband signal is mathematically analyzed. Based on the analysis, IQ imbalance parameters are estimated and the coupling effect of IQ imbalance is compensated using digital baseband processing alone. Simulation results show that the proposed IQ imbalance compensation successfully removes IQ imbalance. The deviation from the ideal performance is less than 1 dB when it is applied to the 3GPP-LTE carrier aggregation.

  • Almost Quadriphase Sequences with Even Period and Low Autocorrelation

    XiuPing PENG  Chengqian XU  Kai LIU  

     
    LETTER-Coding Theory

      Vol:
    E95-A No:4
      Page(s):
    832-834

    A new class of almost quadriphase sequences with four zero elements of period 4N, where N ≡ 1(mod 4) being a prime, is constructed. The maximum nontrivial autocorrelations of the constructed almost quadriphase sequences are shown to be 4.

  • Reticella: An Execution Trace Slicing and Visualization Tool Based on a Behavior Model

    Kunihiro NODA  Takashi KOBAYASHI  Shinichiro YAMAMOTO  Motoshi SAEKI  Kiyoshi AGUSA  

     
    PAPER

      Vol:
    E95-D No:4
      Page(s):
    959-969

    Program comprehension using dynamic information is one of key tasks of software maintenance. Software visualization with sequence diagrams is a promising technique to help developer comprehend the behavior of object-oriented systems effectively. There are many tools that can support automatic generation of a sequence diagram from execution traces. However it is still difficult to understand the behavior because the size of automatically generated sequence diagrams from the massive amounts of execution traces tends to be beyond developer's capacity. In this paper, we propose an execution trace slicing and visualization method. Our proposed method is capable of slice calculation based on a behavior model which can treat dependencies based on static and dynamic analysis and supports for various programs including exceptions and multi-threading. We also introduce our tool that perform our proposed slice calculation on the Eclipse platform. We show the applicability of our proposed method by applying the tool to two Java programs as case studies. As a result, we confirm effectiveness of our proposed method for understanding the behavior of object-oriented systems.

  • Scenario Generation Using Differential Scenario Information

    Masayuki MAKINO  Atsushi OHNISHI  

     
    PAPER

      Vol:
    E95-D No:4
      Page(s):
    1044-1051

    A method of generating scenarios using differential scenaro information is presented. Behaviors of normal scenarios of similar purpose are quite similar each other, while actors and data in scenarios are different among these scenarios. We derive the differential information between them and apply the differential information to generate new alternative/exceptional scenarios. Our method will be illustrated with examples. This paper describes (1) a language for describing scenarios based on a simple case grammar of actions, (2) introduction of the differential scenario, and (3) method and examples of scenario generation using the differential scenario.

  • Finding Incorrect and Missing Quality Requirements Definitions Using Requirements Frame

    Haruhiko KAIYA  Atsushi OHNISHI  

     
    PAPER

      Vol:
    E95-D No:4
      Page(s):
    1031-1043

    Defining quality requirements completely and correctly is more difficult than defining functional requirements because stakeholders do not state most of quality requirements explicitly. We thus propose a method to measure a requirements specification for identifying the amount of quality requirements in the specification. We also propose another method to recommend quality requirements to be defined in such a specification. We expect stakeholders can identify missing and unnecessary quality requirements when measured quality requirements are different from recommended ones. We use a semi-formal language called X-JRDL to represent requirements specifications because it is suitable for analyzing quality requirements. We applied our methods to a requirements specification, and found our methods contribute to defining quality requirements more completely and correctly.

  • Current Controlled MOS Current Mode Logic with Auto-Detection of Threshold Voltage Fluctuation

    Hyoungjun NA  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    617-626

    In this paper, a theoretical analysis of current-controlled (CC-) MOS current mode logic (MCML) is reported. Furthermore, the circuit performance of the CC-MCML with the auto-detection of threshold voltage (Vth) fluctuation is evaluated. The proposed CC-MCML with the auto-detection of Vth fluctuation automatically suppresses the degradation of circuit performance induced by the Vth fluctuations of the transistors automatically, by detecting these fluctuations. When a Vth fluctuation of ± 0.1 V occurs on the circuit, the cutoff frequency of the circuit is increased from 0 Hz to 3.5 GHz by using the proposed CC-MCML with the auto-detection of Vth fluctuation.

  • Towards Applying Dynamic Software Updating for DDS-Based Applications

    Dong Kwan KIM  Won-Tae KIM  Seung-Min PARK  

     
    LETTER-Software Engineering

      Vol:
    E95-D No:4
      Page(s):
    1151-1154

    In this letter, we apply dynamic software updating to long-lived applications on the DDS middleware while minimizing service interruption and satisfying Quality of Service (QoS) requirements. We dynamically updated applications which run on a commercial DDS implementation to demonstrate the applicability of our approach to dynamic updating. The results show that our update system does not impose an undue performance overhead–all patches could be injected in less than 350 ms and the maximum CPU usage is less than 17%. In addition, the overhead on application throughput due to dynamic updates ranged from 0 to at most 8% and the deadline QoS of the application was satisfied while updating.

  • Design of a Tree-Queue Model for a Large-Scale System

    Byungsung PARK  Jaeyeong YOO  Hagbae KIM  

     
    LETTER-Dependable Computing

      Vol:
    E95-D No:4
      Page(s):
    1159-1161

    In a large queuing system, the effect of the ratio of the filled data on the queue and waiting time from the head of a queue to the service gate are important factors for process efficiency because they are too large to ignore. However, many research works assumed that the factors can be considered to be negligible according to the queuing theory. Thus, the existing queuing models are not applicable to the design of large-scale systems. Such a system could be used as a product classification center for a home delivery service. In this paper, we propose a tree-queue model for large-scale systems that is more adaptive to efficient processes compared to existing models. We analyze and design a mean waiting time equation related to the ratio of the filled data in the queue. Based on simulations, the proposed model demonstrated improvement in process-efficiency, and it is more suitable to realistic system modeling than other compared models for large-scale systems.

  • Time-Domain Processing of Frequency-Domain Data and Its Application

    Wen-Long CHIN  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:4
      Page(s):
    1406-1409

    Based on our previous work, this work presents a complete method for time-domain processing of frequency-domain data with evenly-spaced frequency indices, together with its application. The proposed method can be used to calculate the cross spectral and power spectral densities for the frequency indices of interest. A promising application for the time-domain processing of frequency-domain data, particularly for calculating the summation of frequency-domain cross- and auto-correlations in orthogonal frequency-division multiplexing (OFDM) systems, is studied. The advantages of the time-domain processing of frequency-domain data are 1) the ability to rapidly acquire the properties that are readily available in the frequency domain and 2) the reduced complexity. The proposed fast algorithm directly employs time-domain samples, and hence, does not need the fast Fourier transform (FFT) operation. The proposed algorithm has a lower complexity (required complex multiplications ∼ O(N)) than conventional techniques.

  • Initialize and Weak-Program Erasing Scheme for High-Performance and High-Reliability Ferroelectric NAND Flash Solid-State Drive

    Kousuke MIYAJI  Ryoji YAJIMA  Teruyoshi HATANAKA  Mitsue TAKAHASHI  Shigeki SAKAI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    609-616

    Initialize and weak-program erasing scheme is proposed to achieve high-performance and high-reliability Ferroelectric (Fe-) NAND flash solid-state drive (SSD). Bit-by-bit erase VTH control is achieved by the proposed erasing scheme and history effects in Fe-NAND is also suppressed. History effects change the future erase VTH shift characteristics by the past program voltage. The proposed erasing scheme decreases VTH shift variation due to history effects from ±40% to ±2% and the erase VTH distribution width is reduced from over 0.4 V to 0.045 V. As a result, the read and VPASS disturbance decrease by 42% and 37%, respectively. The proposed erasing scheme is immune to VTH variations and voltage stress. The proposed erasing scheme also suppresses the power and bandwidth degradation of SSD.

  • Fluctuation Tolerant Charge-Integration Read Scheme for Ultrafast DNA Sequencing with Nanopore Device

    Kazuo ONO  Yoshimitsu YANAGAWA  Akira KOTABE  Riichiro TAKEMURA  Tatsuo NAKAGAWA  Tomio IWASAKI  Takayuki KAWAHARA  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    651-660

    A charge-integration read scheme has been developed for a solid-nanopore DNA-sequencer that determines a genome by direct and electrical measurements of transverse tunneling current in single-stranded DNA. The magnitude of the current was simulated with a first-principles molecular dynamics method. It was found that the magnitude is as small as in the sub-pico ampere range, and signals from four bases represent wide distributions with overlaps between each base. The distribution is believed to originate with translational and rotational motion of DNA in a nanopore with a frequency of over 105 Hz. A sequence scheme is presented to distinguish the distributed signals. The scheme makes widely distributed signals time-integrated convergent by cumulating charge at the capacitance of a nanopore device and read circuits. We estimated that an integration time of 1.4 ms is sufficient to obtain a signal difference of over 10 mV for distinguishing between each DNA base. Moreover, the time is shortened if paired bases, such as A-T and C-G in double-stranded DNA, can be measured simultaneously with two nanopores. Circuit simulations, which included the capacitance of a nanopore calculated with a device simulator, successfully distinguished between DNA bases in less than 2.0 ms. The speed is roughly six orders faster than that of a conventional DNA sequencer. It is possible to determine the human genome in one day if 100-nanopores are operated in parallel.

  • Frequency-Dependent Formulations of a Drude-Critical Points Model for Explicit and Implicit FDTD Methods Using the Trapezoidal RC Technique

    Jun SHIBAYAMA  Keisuke WATANABE  Ryoji ANDO  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E95-C No:4
      Page(s):
    725-732

    A Drude-critical points (D-CP) model for considering metal dispersion is newly incorporated into the frequency-dependent FDTD method using the simple trapezoidal recursive convolution (TRC) technique. Numerical accuracy is investigated through the analysis of pulse propagation in a metal (aluminum) cladding waveguide. The TRC technique with a single convolution integral is found to provide higher accuracy, when compared with the recursive convolution counterpart. The methodology is also extended to the unconditionally stable FDTD based on the locally one-dimensional scheme for efficient frequency-dependent calculations.

  • An 88/44 Adaptive Hadamard Transform Based FME VLSI Architecture for 4 K2 K H.264/AVC Encoder

    Yibo FAN  Jialiang LIU  Dexue ZHANG  Xiaoyang ZENG  Xinhua CHEN  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    447-455

    Fidelity Range Extension (FRExt) (i.e. High Profile) was added to the H.264/AVC recommendation in the second version. One of the features included in FRExt is the Adaptive Block-size Transform (ABT). In order to conform to the FRExt, a Fractional Motion Estimation (FME) architecture is proposed to support the 88/44 adaptive Hadamard Transform (88/44 AHT). The 88/44 AHT circuit contributes to higher throughput and encoding performance. In order to increase the utilization of SATD (Sum of Absolute Transformed Difference) Generator (SG) in unit time, the proposed architecture employs two 8-pel interpolators (IP) to time-share one SG. These two IPs can work in turn to provide the available data continuously to the SG, which increases the data throughput and significantly reduces the cycles that are needed to process one Macroblock. Furthermore, this architecture also exploits the linear feature of Hadamard Transform to generate the quarter-pel SATD. This method could help to shorten the long datapath in the second-step of two-iteration FME algorithm. Finally, experimental results show that this architecture could be used in the applications requiring different performances by adjusting the supported modes and operation frequency. It can support the real-time encoding of the seven-mode 4 K2 K@24 fps or six-mode 4 K2 K@30 fps video sequences.

  • A Current-Mode Buck DC-DC Converter with Frequency Characteristics Independent of Input and Output Voltages Using a Quadratic Compensation Slope

    Toru SAI  Yasuhiro SUGIMOTO  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    677-685

    By using a quadratic compensation slope, a CMOS current-mode buck DC-DC converter with constant frequency characteristics over wide input and output voltage ranges has been developed. The use of a quadratic slope instead of a conventional linear slope makes both the damping factor in the transfer function and the frequency bandwidth of the current feedback loop independent of the converter's output voltage settings. When the coefficient of the quadratic slope is chosen to be dependent on the input voltage settings, the damping factor in the transfer function and the frequency bandwidth of the current feedback loop both become independent of the input voltage settings. Thus, both the input and output voltage dependences in the current feedback loop are eliminated, the frequency characteristics become constant, and the frequency bandwidth is maximized. To verify the effectiveness of a quadratic compensation slope with a coefficient that is dependent on the input voltage in a buck DC-DC converter, we fabricated a test chip using a 0.18 µm high-voltage CMOS process. The evaluation results show that the frequency characteristics of both the total feedback loop and the current feedback loop are constant even when the input and output voltages are changed from 2.5 V to 7 V and from 0.5 V to 5.6 V, respectively, using a 3 MHz clock.

  • A Game-Theoretic Approach for Opportunistic Spectrum Sharing in Cognitive Radio Networks with Incomplete Information

    Xuesong Jonathan TAN  Liang LI  Wei GUO  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1117-1124

    One important issue in cognitive transmission is for multiple secondary users to dynamically acquire spare spectrum from the single primary user. The existing spectrum sharing scheme adopts a deterministic Cournot game to formulate this problem, of which the solution is the Nash equilibrium. This formulation is based on two implicit assumptions. First, each secondary user is willing to fully exchange transmission parameters with all others and hence knows their complete information. Second, the unused spectrum of the primary user for spectrum sharing is always larger than the total frequency demand of all secondary users at the Nash equilibrium. However, both assumptions may not be true in general. To remedy this, the present paper considers a more realistic assumption of incomplete information, i.e., each secondary user may choose to conceal their private information for achieving higher transmission benefit. Following this assumption and given that the unused bandwidth of the primary user is large enough, we adopt a probabilistic Cournot game to formulate an opportunistic spectrum sharing scheme for maximizing the total benefit of all secondary users. Bayesian equilibrium is considered as the solution of this game. Moreover, we prove that a secondary user can improve their expected benefit by actively hiding its transmission parameters and increasing their variance. On the other hand, when the unused spectrum of the primary user is smaller than the maximal total frequency demand of all secondary users at the Bayesian equilibrium, we formulate a constrained optimization problem for the primary user to maximize its profit in spectrum sharing and revise the proposed spectrum sharing scheme to solve this problem heuristically. This provides a unified approach to overcome the aforementioned two limitations of the existing spectrum sharing scheme.

  • Dynamic Pilot Channel Transmission with Adaptive Receive Filter Configuration for Cognitive Radio System

    Ren SAKATA  Tazuko TOMIOKA  Takahiro KOBAYASHI  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1256-1265

    When a cognitive radio system dynamically utilizes a frequency band, channel control information must be communicated over the network in order for the currently available carrier frequencies to be shared. In order to keep efficient spectrum utilization, this control information should also be dynamically transmitted through channels such as cognitive pilot channels based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers must receive the control signal without knowledge of its carrier frequencies. A novel scheme called differential code parallel transmission (DCPT) enables receivers to receive low-rate information without any knowledge of the carrier frequency. The transmitter simultaneously transmits two signals whose carrier frequencies are separated by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver receives the DCPT signal, it multiplies the signal by a frequency-shifted version of itself; this yields a DC component that represents the data signal, which is then demodulated. However, the multiplication process results in the noise power being squared, necessitating high received signal power. In this paper, to realize a bandpass filter that passes only DCPT signals of unknown frequency and that suppresses noise and interference at other frequencies, a DCPT-adaptive bandpass filter (ABF) that employs an adaptive equalizer is proposed. In the training phase, the received signal is the filter input and the frequency-shifted signal is the training input. Then, the filter is trained to pass the higher-frequency signal of the two DCPT signals. The performance of DCPT-ABF is evaluated through computer simulations. We find that DCPT-ABF operates successfully even under strong interference.

  • A Continuous Query Allocation Scheme with Time-Parameters in Wireless Sensor Networks with Multiple Sinks

    Myungho YEO  Junho PARK  Haksin KIM  Jaesoo YOO  

     
    LETTER-Network

      Vol:
    E95-B No:4
      Page(s):
    1431-1434

    In this paper, we propose a novel scheme to optimize the allocation of continuous queries in a sensor network with multiple sinks. The existing scheme compares the coverage areas of given queries and estimates the amount of sharing among them. It tries to allocate queries to the optimal sink that maximizes the amount of sharing and reduces the communication costs among sensor nodes and sinks. However, it inefficiently allocates continuous queries. The amount of sharing among continuous queries depends not only on their coverage area but also on their time-parameters like time-duration and time-interval. We define a new cost estimator with time-parameters for continuous queries and optimize their allocation in the sensor network. Simulation results show that our scheme performs the allocation of continuous queries efficiently and reduces the communication cost.

  • A Game Theoretic Framework for Bandwidth Allocation and Pricing in Federated Wireless Networks

    Bo GU  Kyoko YAMORI  Sugang XU  Yoshiaki TANAKA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1109-1116

    With the proliferation of IEEE 802.11 wireless local area networks, large numbers of wireless access points have been deployed, and it is often the case that a user can detect several access points simultaneously in dense metropolitan areas. Most owners, however, encrypt their networks to prevent the public from accessing them due to the increased traffic and security risk. In this work, we use pricing as an incentive mechanism to motivate the owners to share their networks with the public, while at the same time satisfying users' service demand. Specifically, we propose a “federated network” concept, in which radio resources of various wireless local area networks are managed together. Our algorithm identifies two candidate access points with the lowest price being offered (if available) to each user. We then model the price announcements of access points as a game, and characterize the Nash Equilibrium of the system. The efficiency of the Nash Equilibrium solution is evaluated via simulation studies as well.

2001-2020hit(6809hit)