The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

2381-2400hit(6809hit)

  • An Efficient Inter-Carrier Interference Cancellation Scheme for OFDM Systems with Frequency Estimation Errors

    Wei-Wen HU  Chih-Peng LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:12
      Page(s):
    3600-3605

    One of the major drawbacks of orthogonal frequency division multiplexing (OFDM) systems is their vulnerability to synchronization errors. To remedy the inter-carrier interference (ICI) effect caused by carrier frequency offset (CFO) estimation errors, this paper proposes a weighted linear parallel ICI cancellation (WLPICIC) equalizer. The optimal weights in the WLPICIC scheme are derived in closed-form expressions by maximizing the average signal-to-interference ratio (SIR) at the WLPICIC output of each sub-carrier. The simulation results show that the WLPICIC equalizer significantly improves the performance of OFDM systems with frequency estimation errors in both AWGN channels and frequency selective fading channels.

  • Iterative Throughput Calculation for Crosspoint Queued Switch

    Milutin RADONJIC  Igor RADUSINOVIC  Jelena CVOROVIC  Kenji YOSHIGOE  

     
    LETTER-Network System

      Vol:
    E93-B No:12
      Page(s):
    3635-3638

    In this letter, we propose a novel approximate method for throughput calculation of crossbar switch with buffers only in crosspoints, in the case of uniform traffic. It is an iterative method based on the balance equations that describe crosspoint buffer state. Due to some approximations, we derive very simple formulas suitable for matrix calculation. This method gives results very close to the results obtained by numerous simulations, especially for larger switch and long buffers.

  • Analysis of Primary Signal Detection Period in Cognitive Wireless Communications

    Chang-Woo PYO  Hiroshi HARADA  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3501-3504

    This paper investigates primary signal detection by using a quiet period (QP) in cognitive wireless communications. In particular, we provide an analytical model for studying the impact of QPs on the system performance. Our analysis shows that two successive QPs have a significant impact on system performance. Moreover, the analytical results obtained reveal an optimum period of two successive QPs that maximize system performance.

  • Coexistence of Dynamic Spectrum Access Based Heterogeneous Networks

    Chen SUN  Yohannes D. ALEMSEGED  HaNguyen TRAN  Hiroshi HARADA  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3293-3301

    This paper addresses the coexistence issue of distributed heterogeneous networks where the network nodes are cognitive radio terminals. These nodes, operating as secondary users (SUs), might interfere with primary users (PUs) who are licensed to use a given frequency band. Further, due to the lack of coordination and the dissimilarity of the radio access technologies (RATs) among these wireless nodes, they might interfere with each other. To solve this coexistence problem, we propose an architecture that enables coordination among the distributed nodes. The architecture provides coexistence solutions and sends reconfiguration commands to SU networks. As an example, time sharing is considered as a solution. Further, the time slot allocation ratios and transmit powers are parameters encapsulated in the reconfiguration commands. The performance of the proposed scheme is evaluated in terms of the coexistence between PUs and SUs, as well as the coexistence among SUs. The former addresses the interference from SUs to PUs, whereas the latter addresses the sharing of an identified spectrum opportunity among heterogeneous SU networks for achieving an efficient spectrum usage. In this study, we first introduce a new parameter named as quality of coexistence (QoC), which is defined as the ratio between the quality of SU transmissions and the negative interference to PUs. In this study we assume that the SUs have multiple antennas and employ fixed transmit power control (fixed-TPC). By using the approximation to the distribution of a weighted sum of chi-square random variables (RVs), we develop an analytical model for the time slot allocation among SU networks. Using this analytical model, we obtain the optimal time slot allocation ratios as well as transmit powers of the SU networks by maximizing the QoC. This leads to an efficient spectrum usage among SUs and a minimized negative influence to the PUs. Results show that in a particular scenario the QoC can be increased by 30%.

  • Distributed Ranging Method for Wireless Sensor Network Localization

    Weile ZHANG  Qinye YIN  Wenjie WANG  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3518-3521

    A novel distributed ranging method for wireless sensor networks (WSN) is proposed in this letter. Linear frequency modulation (LFM) waves are emitted from the two antenna elements equipped at the anchor node simultaneously to create an interference field. Through the frequency measurement of local RSSI (Received Signal Strength Indication) signal, the horizontal distance from the anchor node can be estimated independently at each sensor. Analysis and simulation results demonstrate the effectiveness of our proposed method.

  • Space Frequency Code for Cooperative Communications with both Timing Errors and Carrier Frequency Offsets

    Weile ZHANG  Huiming WANG  Qinye YIN  Wenjie WANG  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3505-3508

    In this letter, we propose a simple distributed space-frequency code with both timing errors and multiple carrier frequency offsets (CFO) in asynchronous cooperative communications. By employing both the Alamouti coding approach and the transmit repetition diversity technique, full diversity gain can be achieved by the fast symbol-wise maximum likelihood (ML) decoding at the destination node. Analysis and simulations demonstrate the effectiveness of the proposed method.

  • On (1) Error Correctable Integer Codes

    Hristo KOSTADINOV  Hiroyoshi MORITA  Nikolai MANEV  

     
    LETTER-Information Theory

      Vol:
    E93-A No:12
      Page(s):
    2758-2761

    Integer codes correct errors of a given type, which means that for a given communication channel and modulator we can choose the type of the errors (which are the most common) then construct integer code capable of correcting those errors. A new general construction of single (1) error correctable integer codes will be presented. Comparison between single and multiple (1) error correctable integer codes over AWGN channel using QAM scheme will be presented.

  • The Firing Squad Synchronization Problems for Number Patterns on a Seven-Segment Display and Segment Arrays

    Kazuya YAMASHITA  Mitsuru SAKAI  Sadaki HIROSE  Yasuaki NISHITANI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:12
      Page(s):
    3276-3283

    The Firing Squad Synchronization Problem (FSSP), one of the most well-known problems related to cellular automata, was originally proposed by Myhill in 1957 and became famous through the work of Moore [1]. The first solution to this problem was given by Minsky and McCarthy [2] and a minimal time solution was given by Goto [3]. A significant amount of research has also dealt with variants of this problem. In this paper, from a theoretical interest, we will extend this problem to number patterns on a seven-segment display. Some of these problems can be generalized as the FSSP for some special trees called segment trees. The FSSP for segment trees can be reduced to a FSSP for a one-dimensional array divided evenly by joint cells that we call segment array. We will give algorithms to solve the FSSPs for this segment array and other number patterns, respectively. Moreover, we will clarify the minimal time to solve these problems and show that there exists no such solution.

  • Time Domain Feedback Equalizer for Fast Fading Channel in OFDM with Scattered Pilot

    Yutaro NAKAGAWA  Yukitoshi SANADA  

     
    LETTER

      Vol:
    E93-A No:12
      Page(s):
    2691-2695

    In this letter, a new feedback equalization scheme to suppress inter-carrier interference (ICI) in an OFDM system using scattered pilot is investigated. On a fast fading channel severe ICI occurs due to a Doppler shift and it deteriorates a bit error rate (BER) seriously because of small subcarrier spacing. In an ISDB-T receiver the equalization is mainly processed in a frequency domain because the scattered pilot is transmitted over the subcarriers. However, the frequency domain equalization may not suppress severe ICI in the case of the fast fading channel with a large Doppler shift. The proposed equalization scheme uses the scattered pilot symbols transformed in a time domain as the reference signal for feedback taps. Numerical results through computer simulation show that the proposed scheme improves the BER performance especially with low carrier-to-noise ratio (CNR) conditions.

  • Subtraction Inversion for Delta Path's Hardware Simplification in MASH Delta-Sigma Modulator

    Pao-Lung CHEN  

     
    LETTER-Circuit Design

      Vol:
    E93-A No:12
      Page(s):
    2616-2620

    The multistage noise-shaping (MASH) delta-sigma modulator (DSM) is the key element in a fractional-N frequency synthesizer. A hardware simplification method with subtraction inversion is proposed for delta-path's design in a MASH delta-sigma modulator. The subtraction inversion method focuses on simplification of adder-subtractor unit in the delta path with inversion of subtraction signal. It achieves with less hardware cost as compared with the conventional approaches. As a result, the hardware organization is regular and easy for expanding into higher order MASH DSM design. Analytical details of the implementation way and hardware cost function with N-th order configuration are presented. Finally, simulations with hardware description language as well as synthesis data verified the proposed design method.

  • Lower Bounds on the Maximum Partial Correlations of Frequency Hopping Sequence Set with Low Hit Zone

    Xianhua NIU  Daiyuan PENG  Fang LIU  Xing LIU  

     
    PAPER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2227-2231

    In order to evaluate the goodness of frequency hopping sequence design, the periodic Hamming correlation function is used as an important measure. Usually, the length of correlation window is shorter than the period of the chosen frequency hopping sequence, so the study of the partial Hamming correlation of frequency hopping sequence is particularly important. In this paper, the maximum partial Hamming correlation lower bounds of frequency hopping sequences with low hit zone, with respect to the size of the frequency slot set, the length of correlation window, the family size, the low hit zone, the maximum partial Hamming autocorrelation and the maximum partial Hamming crosscorrelation are established. It is shown that the new bounds include the known Lempel-Greenberger bound, Peng-Fan bounds, Eun-Jin-Hong-Song bound and Peng-Fan-Lee bounds as special cases.

  • An Energy Saving Scheduling Scheme for OFDMA Two-Hop Relay Systems

    Yanan HUANG  Xuming FANG  Yue ZHAO  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E93-A No:11
      Page(s):
    2320-2327

    Being a new feature of next generation of wireless networks, Mobile Multi-hop Relay (MMR) is proposed for the purpose of coverage extension and throughput enhancement in LTE-Advanced, IEEE 802.16 j/m. Besides, with the help of relay, the system energy consumption could be well saved. In this paper, an energy saving scheduling scheme is proposed for OFDMA based two-hop relay systems. The novel scheme adjusts the modulation and coding (MC) mode and allocates the transmit power dynamically according to the resource intensity. It can also guarantee the Quality of Service (QoS) of different services by setting the scheduling priority. The simulation results show that the novel scheduling scheme can reduce energy consumption up to 76.27% compared to the conventional scheduling scheme, and achieve higher throughput while guaranteeing QoS.

  • Recent Advances in Single-Carrier Frequency-Domain Equalization and Distributed Antenna Network

    Fumiyuki ADACHI  Kazuki TAKEDA  Tatsunori OBARA  Tetsuya YAMAMOTO  Hiroki MATSUDA  

     
    INVITED PAPER

      Vol:
    E93-A No:11
      Page(s):
    2201-2211

    Broadband wireless technology that enables a variety of gigabit-per-second class data services is a requirement in future wireless communication systems. Broadband wireless channels become extremely frequency-selective and cause severe inter-symbol interference (ISI). Furthermore, the average received signal power changes in a random manner because of the shadowing and distance-dependant path losses resulted from the movement of a mobile terminal (MT). Accordingly, the transmission performance severely degrades. To overcome the performance degradation, two most promising approaches are the frequency-domain equalization (FDE) and distributed antenna network (DAN). The former takes advantage of channel frequency-selectivity to obtain the frequency-diversity gain. In DAN, a group of distributed antennas serve each user to mitigate the negative impact of shadowing and path losses. This article will introduce the recent advances in FDE and DAN for the broadband single-carrier (SC) transmissions.

  • Low Correlation Zone Sequences from Interleaved Construction

    Udaya PARAMPALLI  Xiaohu TANG  

     
    INVITED PAPER

      Vol:
    E93-A No:11
      Page(s):
    2220-2226

    Recently there has been a surge of interest in construction of low correlation zone sequences. The purpose of this paper is to survey the known results in the area and to present an interleaved construction of binary low correlation zone sequences. The interleaved construction unifies many constructions currently available in the literature. These sequences are useful in quasi-synchronous code-division multiple access (QS-CDMA) communication systems.

  • Quadriphase Z-Complementary Sequences

    Xudong LI  Pingzhi FAN  Xiaohu TANG  Li HAO  

     
    PAPER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2251-2257

    Aperiodic quadriphase Z-complementary sequences, which include the conventional complementary sequences as special cases, are introduced. It is shown that, the aperiodic quadriphase Z-complementary pairs are normally better than binary ones of the same length, in terms of the number of Z-complementary pairs, and the maximum zero correlation zone. New notions of elementary transformations on quadriphase sequences and elementary operations on sets of quadriphase Z-complementary sequences are presented. In particular, new methods for analyzing the relations among the formulas relative to sets of quadriphase Z-complementary sequences and for describing the sets are proposed. The existence problem of Z-complementary pairs of quadriphase sequences with zero correlation zone equal to 2, 3, and 4 is investigated. Constructions of sets of quadriphase Z-complementary sequences and their mates are given.

  • A 4.78 µs Dynamic Compensated Inductive Coupling Transceiver for Ubiquitous and Wearable Body Sensor Network

    Seulki LEE  Jerald YOO  Hoi-Jun YOO  

     
    PAPER

      Vol:
    E93-B No:11
      Page(s):
    2892-2900

    A Real-time Capacitor Compensation (RCC) scheme is proposed for low power and continuous communication in the wearable inductive coupling transceiver. Since inductance values of wearable inductor vary dynamically with deterioration of its communication characteristics, the inductance value is monitored and its resonance frequency is adjusted by additive parallel/serial capacitors in real time. RLC Bridge for detection of the inductance variations and the Dual-edge Sampling Comparator for recognition of the variance direction are proposed. It is implemented in a 0.18 µm CMOS technology, and it occupies a 12.7 mm2 chip area. The proposed transceiver consumes only 426.6 µW at 4 Mbps data rate. The compensation time takes 4.78 µs, including 3 µs of detection and 1.78 µs for compensation process in worst case.

  • Mixed-Mode Extraction of Figures of Merit for InGaAs Quantum-Well Lasers and SiGe Low-Noise Amplifiers

    Hsien-Cheng TSENG  Jibin HORNG  Chieh HU  Seth TSAU  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E93-C No:11
      Page(s):
    1645-1647

    We propose a new parameter-extraction approach based on a mixed-mode genetic algorithm (GA), including the efficient search-space separation and local-minima-convergence prevention process. The technique, substantially extended from our previous work, allows the designed figures-of-merit, such as internal quantum efficiency (ηi) as well as transparency current density (Jtr) of lasers and minimum noise figure (NFmin) as well as associated available gain (GA,assoc) of low-noise amplifiers (LNAs), extracted by an analytical equation-based methodology combined with an evolutionary numerical tool. Extraction results, which agree well with actually measured data, for both state-of-the-art InGaAs quantum-well lasers and advanced SiGe LNAs are presented for the first time to demonstrate this multi-parameter analysis and high-accuracy optimization.

  • Self-Quotient ε-Filter for Feature Extraction from Noise Corrupted Image

    Mitsuharu MATSUMOTO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E93-D No:11
      Page(s):
    3066-3075

    This paper describes a nonlinear filter that can extract the image feature from noise corrupted image labeled self-quotient ε-filter (SQEF). SQEF is an improved self-quotient filter (SQF) to extract the image feature from noise corrupted image. Although SQF is a simple approach for feature extraction from the images, it is difficult to extract the feature when the image includes noise. On the other hand, SQEF can extract the image feature not only from clear images but also from noise corrupted images with uniform noise, Gaussian noise and impulse noise. We show the algorithm of SQEF and describe its feature when it is applied to uniform noise corrupted image, Gaussian noise corrupted image and impulse noise corrupted image. Experimental results are also shown to confirm the effectiveness of the proposed method.

  • Dispersion of Nanoparticles in Liquid Crystals by Sputtering and Its Effect on the Electrooptic Properties Open Access

    Hiroyuki YOSHIDA  Kosuke KAWAMOTO  Yuma TANAKA  Hitoshi KUBO  Akihiko FUJII  Masanori OZAKI  

     
    INVITED PAPER

      Vol:
    E93-C No:11
      Page(s):
    1595-1601

    The authors describe a method to produce gold nanoparticle-dispersed liquid crystals by means of sputtering, and discuss how the presence of gold nanoparticles affect the electro-optic response of the host liquid crystal. The method exploits the fact that liquid crystals possess low vapor pressures which allow them to undergo the sputtering process, and the target material is sputtered directly on the liquid crystal in a reduced air pressure environment. The sample attained a red-brownish color after sputtering, but no aggregations were observed in the samples kept in the liquid crystal phase. Polarization optical microscopy of the sample placed in a conventional sandwich cell revealed that the phase transition behaviour is affected by the presence of the nanoparticles and that the onset of the nematic phase is observed in the form of bubble-like domains whereas in the pure sample the nematic phase appears after the passing of a phase transition front. Transmission electron microscopy confirmed the presence of single nano-sized particles that were dispersed without forming aggregates in the material. The electro-optic properties of the nanoparticle-dispersed liquid crystal was investigated by measuring the threshold voltage for a twisted-nematic cell. The threshold voltage was found to depend on the frequency of the applied rectangular voltage, and at frequencies higher than 200 Hz, the threshold became lower than the pure samples.

  • Crosscorrelation of m-Sequences, Exponential Sums and Dickson Polynomials

    Tor HELLESETH  

     
    INVITED PAPER

      Vol:
    E93-A No:11
      Page(s):
    2212-2219

    Binary maximal-length sequences (or m-sequences) are sequences of period 2m-1 generated by a linear recursion of degree m. Decimating an m-sequence {st} by an integer d relatively prime to 2m-1 leads to another m-sequence {sdt} of the same period. The crosscorrelation of m-sequences has many applications in communication systems and has been an important and well studied problem during more than 40 years. This paper presents an updated survey on the crosscorrelation between binary m-sequences with at most five-valued crosscorrelation and shows some of the many recent connections of this problem to several areas of mathematics such as exponential sums and Dickson polynomials.

2381-2400hit(6809hit)