The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

2221-2240hit(6809hit)

  • Optimal Selection Criterion of the Modulation and Coding Scheme in Consideration of the Signaling Overhead of Mobile WiMAX Systems

    Jaewoo SO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2153-2157

    An optimal selection criterion of the modulation and coding scheme (MCS) for maximizing spectral efficiency is proposed in consideration of the signaling overhead of mobile WiMAX systems with a hybrid automatic repeat request mechanism. A base station informs users about the resource assignments in each frame, and the allocation process generates a substantial signaling overhead, which influences the system throughput. However, the signaling overhead was ignored in previous MCS selection criteria. In this letter, the spectral efficiency is estimated on the basis of the signaling overhead and the number of transmissions. The performance of the proposed MCS selection criterion is evaluated in terms of the spectral efficiency in the mobile WiMAX system, with and without persistent allocation.

  • Efficient Iterative Frequency Domain Equalization for Single Carrier System with Insufficient Cyclic Prefix

    Chuan WU  Dan BAO  Xiaoyang ZENG  Yun CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2174-2177

    In this letter we present efficient iterative frequency domain equalization for single-carrier (SC) transmission systems with insufficient cyclic prefix (CP). Based on minimum mean square error (MMSE) criteria, iterative decision feedback frequency domain equalization (IDF-FDE) combined with cyclic prefix reconstruction (CPR) is derived to mitigate inter-symbol interference (ISI) and inter-carrier interference (ICI). Computer simulation results reveal that the proposed scheme significantly improves the performance of SC systems with insufficient CP compared with previous schemes.

  • Yb-Doped and Hybrid-Structured Solid Photonic Bandgap Fibers and Linearly-Polarized Fiber Lasers Oscillating above 1160 nm Open Access

    Masahiro KASHIWAGI  Katsuhiro TAKENAGA  Kentaro ICHII  Tomoharu KITABAYASHI  Shoji TANIGAWA  Kensuke SHIMA  Shoichiro MATSUO  Munehisa FUJIMAKI  Kuniharu HIMENO  

     
    INVITED PAPER

      Vol:
    E94-C No:7
      Page(s):
    1145-1152

    We review our recent work on Yb-doped and hybrid-structured solid photonic bandgap fibers (Yb-HS-SPBGFs) for linearly-polarized fiber lasers oscillating in the small gain wavelength range from 1160 nm to 1200 nm. The stack-and-draw or pit-in-jacket method is employed to fabricate two Yb-HS-SPBGFs. Both of the fiber shows optical filtering property for eliminating ASE in the large gain wavelength range from 1030 nm to 1130 nm and enough high birefringence for maintaining linear polarization, thanks to the photonic bandgap effect and the induced birefringence of the hybrid structure. The fiber attenuation of the Yb-HS-SPBGF fabricated by the pit-in-jacket method is much lower than that of the Yb-HS-SPBGF fabricated by stack-and-draw method. Linearly-polarized single stage fiber lasers using Yb-HS-SPBGFs are also demonstrated. Laser oscillation at 1180 nm is confirmed without parasitic lasing in the fiber lasers. High output power and high slope efficiency in linearly-polarized single-cavity fiber laser using the low-loss Yb-HS-SPGF fabricated by the pit-in-jacket method are achieved. Narrow linewidth, high polarization extinction ratio and high beam quality are also confirmed, which are required for high-efficient frequency-doubling. A compact and high-power yellow-orange frequency-doubling laser would be realized by using a linearly-polarized single-cavity fiber laser employing a low-loss Yb-HS-SPBGF.

  • Re-Scheduling of Unit Commitment Based on Customers' Fuzzy Requirements for Power Reliability

    Bo WANG  You LI  Junzo WATADA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E94-D No:7
      Page(s):
    1378-1385

    The development of the electricity market enables us to provide electricity of varied quality and price in order to fulfill power consumers' needs. Such customers choices should influence the process of adjusting power generation and spinning reserve, and, as a result, change the structure of a unit commitment optimization problem (UCP). To build a unit commitment model that considers customer choices, we employ fuzzy variables in this study to better characterize customer requirements and forecasted future power loads. To measure system reliability and determine the schedule of real power generation and spinning reserve, fuzzy Value-at-Risk (VaR) is utilized in building the model, which evaluates the peak values of power demands under given confidence levels. Based on the information obtained using fuzzy VaR, we proposed a heuristic algorithm called local convergence-averse binary particle swarm optimization (LCA-PSO) to solve the UCP. The proposed model and algorithm are used to analyze several test systems. Comparisons between the proposed algorithm and the conventional approaches show that the LCA-PSO performs better in finding the optimal solutions.

  • Synthesis of 16 Quadrature Amplitude Modulation Using Polarization-Multiplexing QPSK Modulator

    Isao MOROHASHI  Takahide SAKAMOTO  Masaaki SUDO  Atsushi KANNO  Akito CHIBA  Junichiro ICHIKAWA  Tetsuya KAWANISHI  

     
    PAPER

      Vol:
    E94-B No:7
      Page(s):
    1809-1814

    We propose a polarization-multiplexing QPSK modulator for synthesis of a 16 QAM signal. The generation mechanism of 16 QAM is based on an electro-optic vector digital-to-analog converter, which can generate optical multilevel signals from binary electric data sequences. A quad-parallel Mach-Zehnder modulator (QPMZM) used in our previous research requires precise control of electric signals or fabrication of a variable optical attenuator, which significantly raises the degree of difficulty to control electric signals or device fabrication. To overcome this difficulty, we developed the polarization-multiplexing QPSK modulator, which improved the method of superposition of QPSK signals. In the polarization-multiplexing QPSK modulator, two QPSK signals are output with orthogonal polarization and superposed through a polarizer. The amplitude ratio between the two QPSK signals can be precisely controlled by rotating the polarizer to arrange the 16 symbols equally. Generation of 16 QAM with 40 Gb/s and a bit error rate of 5.6910-5 was successfully demonstrated using the polarization-multiplexing QPSK modulator. This modulator has simpler configuration than the previous one, utilized a dual-polarization MZM, alleviating complicated control of electric signals.

  • Differential Behavior Equivalent Classes of Shift Register Equivalents for Secure and Testable Scan Design

    Katsuya FUJIWARA  Hideo FUJIWARA  Hideo TAMAMOTO  

     
    PAPER-Dependable Computing

      Vol:
    E94-D No:7
      Page(s):
    1430-1439

    It is important to find an efficient design-for-testability methodology that satisfies both security and testability, although there exists an inherent contradiction between security and testability for digital circuits. In our previous work, we reported a secure and testable scan design approach by using extended shift registers that are functionally equivalent but not structurally equivalent to shift registers, and showed a security level by clarifying the cardinality of those classes of shift register equivalents (SR-equivalents). However, SR-equivalents are not always secure for scan-based side-channel attacks. In this paper, we consider a scan-based differential-behavior attack and propose several classes of SR-equivalent scan circuits using dummy flip-flops in order to protect the scan-based differential-behavior attack. To show the security level of those SR-equivalent scan circuits, we introduce a differential-behavior equivalent relation and clarify the number of SR-equivalent scan circuits, the number of differential-behavior equivalent classes and the cardinality of those equivalent classes.

  • Preamble Design for Effective Multi-Channel Estimation in WiMedia UWB Systems

    Jee-Hoon KIM  Hyoung-Kyu SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2145-2148

    In this letter, we propose an effective preamble based on constant amplitude and zero auto-correlation (CAZAC) sequence for multi-input multi-output (MIMO) and cooperative WiMedia ultra-wideband (UWB) systems. The proposed preamble even provides better single-channel estimation performance than the preamble specified in the standard in severe UWB channel model. The effectiveness of the proposed design is confirmed through the mean square error (MSE) performance.

  • Comparing Process Behaviors with Finite Chu Spaces

    Xutao DU  Chunxiao XING  Lizhu ZHOU  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E94-D No:6
      Page(s):
    1321-1324

    We develop a distance function for finite Chu spaces based on their behavior. Typical examples are given to show the coincidence between the distance function and intuition. We show by example that the triangle inequality should not be satisfied when it comes to comparing two processes.

  • Optimized Fuzzy Adaptive Filtering for Ubiquitous Sensor Networks

    Hae Young LEE  Tae Ho CHO  

     
    PAPER-Network

      Vol:
    E94-B No:6
      Page(s):
    1648-1656

    In ubiquitous sensor networks, extra energy savings can be achieved by selecting the filtering solution to counter the attack. This adaptive selection process employs a fuzzy rule-based system for selecting the best solution, as there is uncertainty in the reasoning processes as well as imprecision in the data. In order to maximize the performance of the fuzzy system the membership functions should be optimized. However, the efforts required to perform this optimization manually can be impractical for commonly used applications. This paper presents a GA-based membership function optimizer for fuzzy adaptive filtering (GAOFF) in ubiquitous sensor networks, in which the efficiency of the membership functions is measured based on simulation results and optimized by GA. The proposed optimization consists of three units; the first performs a simulation using a set of membership functions, the second evaluates the performance of the membership functions based on the simulation results, and the third constructs a population representing the membership functions by GA. The proposed method can optimize the membership functions automatically while utilizing minimal human expertise.

  • Error Control for Performance Improvement of Brain-Computer Interface: Reliability-Based Automatic Repeat Request

    Hiromu TAKAHASHI  Tomohiro YOSHIKAWA  Takeshi FURUHASHI  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Vol:
    E94-D No:6
      Page(s):
    1243-1252

    Brain-Computer Interfaces (BCIs) are systems that translate one's thoughts into commands to restore control and communication to severely paralyzed people, and they are also appealing to healthy people. One of the challenges is to improve the performance of BCIs, often measured by the accuracy and the trial duration, or the information transfer rate (ITR), i.e., the mutual information per unit time. Since BCIs are communications between a user and a system, error control schemes such as forward error correction and automatic repeat request (ARQ) can be applied to BCIs to improve the accuracy. This paper presents reliability-based ARQ (RB-ARQ), a variation of ARQ designed for BCIs, which employs the maximum posterior probability for the repeat decision. The current results show that RB-ARQ is more effective than the conventional methods, i.e., better accuracy when trial duration was the same, and shorter trial duration when the accuracy was the same. This resulted in a greater information transfer rate and a greater utility, which is a more practical performance measure in the P300 speller task. The results also show that such users who achieve a poor accuracy for some reason can benefit the most from RB-ARQ, which could make BCIs more universal.

  • Least-Squares Independence Test

    Masashi SUGIYAMA  Taiji SUZUKI  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E94-D No:6
      Page(s):
    1333-1336

    Identifying the statistical independence of random variables is one of the important tasks in statistical data analysis. In this paper, we propose a novel non-parametric independence test based on a least-squares density ratio estimator. Our method, called least-squares independence test (LSIT), is distribution-free, and thus it is more flexible than parametric approaches. Furthermore, it is equipped with a model selection procedure based on cross-validation. This is a significant advantage over existing non-parametric approaches which often require manual parameter tuning. The usefulness of the proposed method is shown through numerical experiments.

  • Scene Categorization with Classified Codebook Model

    Xu YANG  De XU  Songhe FENG  Yingjun TANG  Shuoyan LIU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E94-D No:6
      Page(s):
    1349-1352

    This paper presents an efficient yet powerful codebook model, named classified codebook model, to categorize natural scene category. The current codebook model typically resorts to large codebook to obtain higher performance for scene categorization, which severely limits the practical applicability of the model. Our model formulates the codebook model with the theory of vector quantization, and thus uses the famous technique of classified vector quantization for scene-category modeling. The significant feature in our model is that it is beneficial for scene categorization, especially at small codebook size, while saving much computation complexity for quantization. We evaluate the proposed model on a well-known challenging scene dataset: 15 Natural Scenes. The experiments have demonstrated that our model can decrease the computation time for codebook generation. What is more, our model can get better performance for scene categorization, and the gain of performance becomes more pronounced at small codebook size.

  • A Linear Optimization of Dual-Tree Complex Wavelet Transform

    Seisuke KYOCHI  Takafumi SHIMIZU  Masaaki IKEHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:6
      Page(s):
    1386-1393

    In this paper, a linear optimization of the dual-tree complex wavelet transform (DTCWT) based on the least squares method is proposed. The proposed method can design efficient DTCWTs by improving the design degrees of freedom and solving the least square solution iteratively. Because the resulting DTCWTs have good approximation accuracy of the half sample delay condition and the stopband attenuation, they provide precise shift-invariance and directionality. Finally, the proposed DTCWTs are evaluated by applying to non-linear approximation and image denoising, and showed their effectiveness, compared with the conventional DTCWTs.

  • Parameterization of Perfect Sequences of Real Numbers

    Takao MAEDA  Takafumi HAYASHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:6
      Page(s):
    1401-1407

    A perfect sequence is a sequence having an impulsive autocorrelation function. Perfect sequences have several applications, such as CDMA, ultrasonic imaging, and position control. A parameterization of a perfect sequence is presented in the present paper. We treat a set of perfect sequences as a zero set of quadratic equations and prove a decomposition law of perfect sequences. The decomposition law reduces the problem of the parameterization of perfect sequences to the problem of the parameterization of quasi-perfect sequences and the parameterization of perfect sequences of short length. The parameterization of perfect sequences for simple cases and quasi-perfect sequences should be helpful in obtaining a parameterization of perfect sequences of arbitrary length. According to our theorem, perfect sequences can be represented by a sum of trigonometric functions.

  • Optimum Frame Synchronization for OFDM Systems

    Heon HUH  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E94-B No:6
      Page(s):
    1732-1735

    Orthogonal frequency division multiplexing has emerged as a promising air interface scheme for wireless broadband communications. For OFDM systems, frame synchronization has received much attention in the literature, though simple correlators are still widely used in real systems. In this letter, we present the analytical expression of the optimal frame synchronizer for OFDM systems. Frame synchronization is posed as a maximum a posteriori probability estimation. We show that the resulting frame synchronizer consists of a correlation term and a correction term. The correction term accounts for the random data surrounding a synchronization word. Numerical results show the performance gain of the proposed frame synchronizer over a correlation scheme.

  • Coexistence of WiFi and WiMAX Systems Based on Coexistence Zone within WiMAX Frame Structure and Modified Power Saving Mode of WiFi System

    Jongwoo KIM  Suwon PARK  Seung Hyong RHEE  Yong-Hoon CHOI  Ho Young HWANG  Young-uk CHUNG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:6
      Page(s):
    1781-1784

    Various co-sited wireless communication systems may share the same frequency band. This causes mutual interference between the wireless communication systems, and degrades the performance of each wireless communication system. In this paper, we analyze the effect of mutual interference between WiFi and WiMAX systems sharing the same frequency band. We propose novel methods based on a proposed coexistence zone within the WiMAX frame structure and a modified power saving mode of the WiFi system to solve the problem. We evaluate the performance of the proposed methods by computer simulation.

  • TSC-IRNN: Time- and Space-Constraint In-Route Nearest Neighbor Query Processing Algorithms in Spatial Network Databases

    Yong-Ki KIM  Jae-Woo CHANG  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E94-D No:6
      Page(s):
    1201-1209

    Although a large number of query processing algorithms in spatial network database (SNDB) have been studied, there exists little research on route-based queries. Since moving objects move only in spatial networks, route-based queries, like in-route nearest neighbor (IRNN), are essential for Location-based Service (LBS) and Telematics applications. However, the existing IRNN query processing algorithm has a problem in that it does not consider time and space constraints. Therefore, we, in this paper, propose IRNN query processing algorithms which take both time and space constraints into consideration. Finally, we show the effectiveness of our IRNN query processing algorithms considering time and space constraints by comparing them with the existing IRNN algorithm.

  • Modeling of the Electrical Fast Transient/Burst Generator and the Standard Injection Clamp

    Xiaoshe ZHAI  Yingsan GENG  Jianhua WANG  Guogang ZHANG  Yan WANG  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:6
      Page(s):
    1076-1083

    This paper presents an accurate and systematic method to simulate the interference imposed on the input/output (I/O) ports of electronic equipment under the electrical fast transients/burst (EFT/B) test. The equivalent circuit of the EFT/B generator and the coupling clamp are modeled respectively. Firstly, a transfer function (TF) of the EFT pulse-forming network is constructed with the latent parameters based on circuit theory. In the TF, two negative real parameters characterize the non-oscillation process of the network while one complex conjugate pair characterizes the damping-oscillation process. The TF of the pulse-forming network is therefore synthesized in the equivalent circuit of the EFT/B generator. Secondly, the standard coupling clamp is modeled based on the scatter (S) parameter obtained by using a vector network analyzer. By applying the vector fitting method during the rational function approximation, a macromodel of the coupling clamp can be obtained and converted to a Spice compatible equivalent circuit. Based on the aforementioned procedures, the interference imposed on the I/O ports can be simulated. The modeling methods are validated experimentally, where the interference in differential mode and common mode is evaluated respectively.

  • Channel Estimation Improvement with Frequency Domain MMSE Equalization for PCP-SC System

    Yafei HOU  Tomohiro HASE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:6
      Page(s):
    1690-1698

    In this paper, we propose a simple but effective way of improving the performance of channel estimation (CE) for pilot cyclic prefixed single carrier (PCP-SC) system. The proposed method utilizes the property that the shifting signal of the PCP pilot signal can also be utilized to estimate the channel information. The receiver can continuously estimate the channel information by just shifting the received pilot signal. Regardless of the signal-to-noise ratio (SNR) and the pilot type, the proposed method can achieve about a 1.72 dB performance gain in terms of the mean squared error (MSE) of channel estimation with a slight increase in computational complexity. The BER performance with the proposed CE improvement are evaluated in a multipath fading channel using a zero-forcing (ZF) equalizer and an minmum mean squared error (MMSE) equalizer by computer simulation. It is shown that the proposed CE improvment method using an MMSE equalizer which has an unbiased vlaue of noise variance (NV) estimator gives a promising BER performance. The proposed method also benefits the estimation of the SNR for the single carrier system.

  • Neary: Conversational Field Detection Based on Situated Sound Similarity

    Toshiya NAKAKURA  Yasuyuki SUMI  Toyoaki NISHIDA  

     
    PAPER

      Vol:
    E94-D No:6
      Page(s):
    1164-1172

    This paper proposes a system called Neary that detects conversational fields based on similarity of auditory situation among users. The similarity of auditory situation between each pair of the users is measured by the similarity of frequency property of sound captured by head-worn microphones of the individual users. Neary is implemented with a simple algorithm and runs on portable PCs. Experimental result shows Neary can successfully distinguish groups of conversations and track dynamic changes of them. This paper also presents two examples of Neary deployment to detect user contexts during experience sharing in touring at the zoo and attending an academic conference.

2221-2240hit(6809hit)