The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] REM(1013hit)

181-200hit(1013hit)

  • Extended S-Parameter Method for Measuring Reflection and Mutual Coupling of Multi-Antennas Open Access

    Takashi YANAGI  Toru FUKASAWA  Hiroaki MIYASHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/04/22
      Vol:
    E99-B No:10
      Page(s):
    2195-2202

    In this paper, a measurement method for the impedance and mutual coupling of multi-antennas that we have proposed is summarized. Impedance and mutual coupling characteristics are obtained after reducing the influence of the coaxial cables by synthesizing the measured S-parameters under the condition that unbalanced currents on the outside of the coaxial cables are canceled at feed points. We apply the proposed method to two closely positioned monopole antennas mounted on a small ground plane and demonstrate the validity and effectiveness of the proposed method by simulation and experiment. The proposed method is significantly better in terms of the accuracy of the mutual coupling data. In the presented case, the errors at the resonant frequency of the antennas are only 0.5dB in amplitude and 1.8° in phase.

  • ePec-LDPC HARQ: An LDPC HARQ Scheme with Targeted Retransmission

    Yumei WANG  Jiawei LIANG  Hao WANG  Eiji OKI  Lin ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2016/04/12
      Vol:
    E99-B No:10
      Page(s):
    2168-2178

    In 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) systems, when HARQ (Hybrid Automatic Repeat request) retransmission is invoked, the data at the transmitter are retransmitted randomly or sequentially regardless of their relationship to the wrongly decoded data. Such practice is inefficient since precious transmission resources will be spent to retransmit data that may be of no use in error correction at the receiver. This paper proposes an incremental redundancy HARQ scheme based on Error Position Estimating Coding (ePec) and LDPC (Low Density Parity Check Code) channel coding, which is called ePec-LDPC HARQ. The proposal is able to feedback the wrongly decoded code blocks within a specific MAC (Media Access Control) PDU (Protocol Data Unit) from the receiver. The transmitter gets the feedback information and then performs targeted retransmission. That is, only the data related to the wrongly decoded code blocks are retransmitted, which can improve the retransmission efficiency and thus reduce the retransmission overload. An enhanced incremental redundancy LDPC coding approach, called EIR-LDPC, together with a physical layer framing method, is developed to implement ePec-LDPC HARQ. Performance evaluations show that ePec-LDPC HARQ reduces the overall transmission resources by 15% compared to a conventional LDPC HARQ scheme. Moreover, the average retransmission times of each MAC PDU and the transmission delay are also reduced considerably.

  • Iterative Image Dehazing Using the Dark Channel Prior

    Sung-Ho LEE  Seung-Won JUNG  Sung-Jea KO  

     
    LETTER-Image

      Vol:
    E99-A No:10
      Page(s):
    1904-1906

    The dark channel prior (DCP)-based image dehazing method has been widely used for enhancing visibility of outdoor images. However, since the DCP-based method assumes that the minimum values within local patches of natural outdoor haze-free images are zero, underestimation of the transmission is inevitable when the assumption does not hold. In this letter, a novel iterative image dehazing algorithm is proposed to compensate for the underestimated transmission. Experimental results show that the proposed method can improve the dehazing performance by increasing the transmission estimation accuracy.

  • Semi-Incremental Recognition of On-Line Handwritten Japanese Text

    Cuong-Tuan NGUYEN  Bilan ZHU  Masaki NAKAGAWA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/07/19
      Vol:
    E99-D No:10
      Page(s):
    2619-2628

    This paper presents a semi-incremental recognition method for on-line handwritten Japanese text and its evaluation. As text becomes longer, recognition time and waiting time become large if it is recognized after it is written (batch recognition). Thus, incremental methods have been proposed with recognition triggered by every stroke but the recognition rates are damaged and more CPU time is incurred. We propose semi-incremental recognition and employ a local processing strategy by focusing on a recent sequence of strokes defined as ”scope” rather than every new stroke. For the latest scope, we build and update a segmentation and recognition candidate lattice and advance the best-path search incrementally. We utilize the result of the best-path search in the previous scope to exclude unnecessary segmentation candidates. This reduces the number of candidate character recognition with the result of reduced processing time. We also reuse the segmentation and recognition candidate lattice in the previous scope for the latest scope. Moreover, triggering recognition processes every several strokes saves CPU time. Experiments made on TUAT-Kondate database show the effectiveness of the proposed semi-incremental recognition method not only in reduced processing time and waiting time, but also in recognition accuracy.

  • Reliability-Enhanced ECC-Based Memory Architecture Using In-Field Self-Repair

    Gian MAYUGA  Yuta YAMATO  Tomokazu YONEDA  Yasuo SATO  Michiko INOUE  

     
    PAPER-Dependable Computing

      Pubricized:
    2016/06/27
      Vol:
    E99-D No:10
      Page(s):
    2591-2599

    Embedded memory is extensively being used in SoCs, and is rapidly growing in size and density. It contributes to SoCs to have greater features, but at the expense of taking up the most area. Due to continuous scaling of nanoscale device technology, large area size memory introduces aging-induced faults and soft errors, which affects reliability. In-field test and repair, as well as ECC, can be used to maintain reliability, and recently, these methods are used together to form a combined approach, wherein uncorrectable words are repaired, while correctable words are left to the ECC. In this paper, we propose a novel in-field repair strategy that repairs uncorrectable words, and possibly correctable words, for an ECC-based memory architecture. It executes an adaptive reconfiguration method that ensures 'fresh' memory words are always used until spare words run out. Experimental results demonstrate that our strategy enhances reliability, and the area overhead contribution is small.

  • Low Cost, High Performance of Coplanar Waveguide Fabricated by Screen Printing Technology Open Access

    Masahiro HORIBE  

     
    INVITED PAPER

      Vol:
    E99-C No:10
      Page(s):
    1094-1099

    This paper presents an innovative fabrication process for a planar circuits at millimeter-wave frequency. Screen printing technology provides low cost and high performance coplanar waveguides (CPW) lines in planar devices operated at millimeter-wave frequency up to 110GHz. Printed transmission lines provide low insertion losses of 0.30dB/mm at 110GHz and small return loss like as impedance standard lines. In the paper, Multiline Thru-Reflect-Line (TRL) calibration was also demonstrated by using the impedance standard substrates (ISS) fabricated by screen printing. Regarding calibration capability validation, verification devices were measured and compare the results to the result obtained by the TRL calibration using commercial ISS. The comparison results obtained by calibration of screen printing ISS are almost the same as results measured based on conventional ISS technology.

  • Measurement of Wireless LAN Characteristics in Sewer Pipes for Sewer Inspection Systems Using Drifting Wireless Sensor Nodes

    Taiki NAGASHIMA  Yudai TANAKA  Susumu ISHIHARA  

     
    PAPER

      Vol:
    E99-B No:9
      Page(s):
    1989-1997

    Deterioration of sewer pipes is one of very important problems in Japan. Sewer inspections have been carried out mainly by visual check or wired remote robots with a camera. However, such inspection schemes involve high labor and/or monetary cost. Sewer inspection with boat-type video cameras or unwired robots takes a long time to check the result of the inspection because video data are obtained after the equipment is retrieved from the pipe. To realize low cost, safe and quick inspection of sewer pipes, we have proposed a sewer inspection system using drifting wireless sensor nodes. Water, soil, and the narrow space in the pipe make the long-range and high throughput wireless radio communication difficult. Therefore, we have to identify suitable radio frequency and antenna configuration based on wireless communication characteristics in sewer pipes. If the frequency is higher, the Fresnel zone, the needed space for the line of sight is small, but the path loss in free space is large. On the other hand, if the frequency is lower, the size of the Fresnel zone is large, but the path loss in free space is small. We conducted wireless communication experiments using 920MHz, 2.4GHz, and 5GHz band off-the-shelf devices in an experimental underground pipe. The measurement results show that the wireless communication range of 5GHz (IEEE 802.11a) is over 8m in a 200mm-diameter pipe and is longer than 920MHz (ARIB STD-T108), 2.4GHz (IEEE 802.11g, IEEE 802.15.4) band at their maximum transmission power. In addition, we confirmed that devices that use IEEE 802.11a and 54Mbps bit rate can transmit about 43MB data while they are in the communication range of an AP and drift at 1m/s in a 200mm-diameter pipe, and it is bigger than one of devices that use other bit rate.

  • Detecting Violations of Security Requirements for Vulnerability Discovery in Source Code

    Hongzhe LI  Jaesang OH  Heejo LEE  

     
    LETTER-Software System

      Pubricized:
    2016/06/13
      Vol:
    E99-D No:9
      Page(s):
    2385-2389

    Finding software vulnerabilities in source code before the program gets deployed is crucial to ensure the software quality. Existing source code auditing tools for vulnerability detection generate too many false positives, and only limited types of vulnerability can be detected automatically. In this paper, we propose an extendable mechanism to reveal vulnerabilities in source code with low false positives by specifying security requirements and detecting requirement violations of the potential vulnerable sinks. The experimental results show that the proposed mechanism can detect vulnerabilities with zero false positives and indicate the extendability of the mechanism to cover more types of vulnerabilities.

  • A Zero Bias Frequency-Domain Interference Suppressor for GNSS Receivers

    Guangteng FAN  Xiaomei TANG  Junwei NIE  Yangbo HUANG  Guangfu SUN  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2016/04/04
      Vol:
    E99-B No:9
      Page(s):
    2081-2086

    Global navigation satellite system (GNSS) receivers equipped with the frequency domain interference suppression (FDIS) filter can operate in environments with harsh interference. The FDIS will not cause tracking error bias for an ideal analog receiver channel as its magnitude response and phase response are constant. However, the analog receiver channel distortion is induced by RF cables, amplifiers, and mixers. The distortion of the channel caused asymmetry correlation function. The correlation function is further deformed by the FDIS filter. More seriously, since the FDIS filter is adaptive, the bias will vary with the jamming pattern, especially when the frequency of interference is varying. For precision navigation applications, this bias must be mitigated. Fortunately, to prevent power loss, the analog receiver channel filter is a real function or the imaginary part is negligible. Therefore, the magnitude response and the phase response are even functions. Based on these channel features, a new FDIS filter based on mirror frequency amplitude compensation (MFAC) method is proposed in this paper. The amplitude of the symmetry position of the notch frequency is doubled in the MFAC method in order to mitigate the tracking bias. Simulation results show that the MFAC-based FDIS method is capable of reducing the bias error to less than 0.1ns, which is significant smaller than that achieved by the traditional FDIS method.

  • Detecting Logical Inconsistencies by Clustering Technique in Natural Language Requirements

    Satoshi MASUDA  Tohru MATSUODANI  Kazuhiko TSUDA  

     
    PAPER

      Pubricized:
    2016/07/06
      Vol:
    E99-D No:9
      Page(s):
    2210-2218

    In the early phases of the system development process, stakeholders exchange ideas and describe requirements in natural language. Requirements described in natural language tend to be vague and include logical inconsistencies, whereas logical consistency is the key to raising the quality and lowering the cost of system development. Hence, it is important to find logical inconsistencies in the whole requirements at this early stage. In verification and validation of the requirements, there are techniques to derive logical formulas from natural language requirements and evaluate their inconsistencies automatically. Users manually chunk the requirements by paragraphs. However, paragraphs do not always represent logical chunks. There can be only one logical chunk over some paragraphs on the other hand some logical chunks in one paragraph. In this paper, we present a practical approach to detecting logical inconsistencies by clustering technique in natural language requirements. Software requirements specifications (SRSs) are the target document type. We use k-means clustering to cluster chunks of requirements and develop semantic role labeling rules to derive “conditions” and “actions” as semantic roles from the requirements by using natural language processing. We also construct an abstraction grammar to transform the conditions and actions into logical formulas. By evaluating the logical formulas with input data patterns, we can find logical inconsistencies. We implemented our approach and conducted experiments on three case studies of requirements written in natural English. The results indicate that our approach can find logical inconsistencies.

  • Scenario Retrieval Method Using Differential Scenario

    Eiji SHIOTA  Atsushi OHNISHI  

     
    PAPER

      Pubricized:
    2016/07/06
      Vol:
    E99-D No:9
      Page(s):
    2202-2209

    In a scenario-based software development, a lot of scenarios should be described in order to clarify the whole behaviors of the target software. By reusing scenarios of similar software systems, it becomes more efficient to newly describe scenarios of the target software. A differential scenario includes the difference between sequences of events of the two scenarios and the difference between nouns in the scenarios. If the nouns of the two scenarios are commonly used in the two scenarios, we regard the two scenarios specify the same or similar system. If the sequences of the events of the two scenarios are corresponding each other, we regard behavior of the two scenarios are similar. In this paper, we derive differential information including different words and events from two scenarios. Then, we propose a method of scenario retrieval using differential information between two scenarios. This method enables to detect similar scenarios for a given scenario. The proposed retrieval method and a prototype system for creating and visualizing differential scenario will be illustrated with examples.

  • Incremental Semantic Construction Based on Combinatory Categorial Grammar

    Yoshihide KATO  Shigeki MATSUBARA  

     
    PAPER-Natural Language Processing

      Pubricized:
    2016/06/02
      Vol:
    E99-D No:9
      Page(s):
    2368-2376

    This paper proposes a method of incrementally constructing semantic representations. Our method is based on Steedman's Combinatory Categorial Grammar (CCG), which has a transparent correspondence between syntax and semantics. In our method, a derivation for a sentence is constructed in an incremental fashion and the corresponding semantic representation is derived synchronously. Our method uses normal form CCG derivation. This is the difference between our approach and previous ones. Previous approaches use most left-branching derivation called incremental derivation, but they cannot process coordinate structures incrementally. Our method overcomes this problem.

  • Remote Data Integrity Checking and Sharing in Cloud-Based Health Internet of Things Open Access

    Huaqun WANG  Keqiu LI  Kaoru OTA  Jian SHEN  

     
    INVITED PAPER

      Pubricized:
    2016/05/31
      Vol:
    E99-D No:8
      Page(s):
    1966-1973

    In the health IoT (Internet of Things), the specialized sensor devices can be used to monitor remote health and notify the emergency information, e.g., blood pressure, heart rate, etc. These data can help the doctors to rescue the patients. In cloud-based health IoT, patients' medical/health data is managed by the cloud service providers. Secure storage and privacy preservation are indispensable for the outsourced medical/health data in cloud computing. In this paper, we study the integrity checking and sharing of outsourced private medical/health records for critical patients in public clouds (ICS). The patient can check his own medical/health data integrity and retrieve them. When a patient is in coma, some authorized entities and hospital can cooperate to share the patient's necessary medical/health data in order to rescue the patient. The paper studies the system model, security model and concrete scheme for ICS in public clouds. Based on the bilinear pairing technique, we design an efficient ICS protocol. Through security analysis and performance analysis, the proposed protocol is provably secure and efficient.

  • Welch FFT Segment Size Selection Method for Spectrum Awareness System

    Hiroki IWATA  Kenta UMEBAYASHI  Samuli TIIRO  Janne J. LEHTOMÄKI  Miguel LÓPEZ-BENÍTEZ  Yasuo SUZUKI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:8
      Page(s):
    1813-1823

    We create a practical method to set the segment size of the Welch FFT for wideband and long-term spectrum usage measurements in the context of hierarchical dynamic spectrum access (DSA). An energy detector (ED) based on the Welch FFT can be used to detect the presence or absence of primary user (PU) signal and to estimate the duty cycle (DC). In signal detection with the Welch FFT, segment size is an important design parameter since it determines both the detection performance and the frequency resolution. Between these two metrics, there is a trade-off relationship which can be controlled by adjusting the segment size. To cope with this trade-off relationship, we define an optimum and, more easy to analyze sub-optimum segment size design criterion. An analysis of the sub-optimum segment size criterion reveals that the resulting segment size depends on the signal-to-noise ratio (SNR) and the DC. Since in practice both SNR and DC are unknown, proper segment setting is difficult. To overcome this problem, we propose an adaptive segment size selection (ASSS) method that uses noise floor estimation outputs. The proposed method does not require any prior knowledge on the SNR or the DC. Simulation results confirm that the proposed ASSS method matches the performance achieved with the optimum design criterion.

  • A Proof of Turyn's Conjecture: Nonexistence of Circulant Hadamard Matrices for Order Greater than Four

    Yoshimasa OH-HASHI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:7
      Page(s):
    1395-1407

    Biphase periodic sequences having elements +1 or -1 with the two-level autocorrelation function are desirable in communications and radars. However, in case of the biphase orthogonal periodic sequences, Turyn has conjectured that there exist only sequences with period 4, i.e., there exist the circulant Hadamard matrices for order 4 only. In this paper, it is described that the conjecture is proved to be true by means of the isomorphic mapping, the Chinese remainder theorem, the linear algebra, etc.

  • SmartUI: Resource-Saving and Editable Smartphone User Interface for Fast Remote PC Control

    Haeyoung LEE  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2016/03/30
      Vol:
    E99-D No:7
      Page(s):
    1852-1861

    There have been many previous studies to facilitate the use of smartphones as remote controllers of PCs. Image-based user interfaces have been suggested to provide fully functioning remote applications. However, most previous image-based interfaces consume high battery power and network bandwidth. Also most users have specific preferences on various applications on remote PCs, but previous smartphone interface systems would not allow users to define their own smartphone interfaces to set their preferences. This paper presents a new smartphone user interface system, SmartUI, for remote PC control. SmartUI is designed as a text-oriented web-based interface, so that it can be used on any smartphone with a built-in web browser while saving battery power and network bandwidth. Moreover, SmartUI enables a user to create buttons on a smartphone; for a quick launch and for shortcut keys, associated with a specific remote PC application. As a result, SmartUI allows a user to create his or her own smartphone interface for remote PC control, while saving battery power and network bandwidth. SmartUI has been tested with various smartphones and the results are also presented in this paper.

  • Power Consumption Signature: Characterizing an SSD

    Balgeun YOO  Seongjin LEE  Youjip WON  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2016/03/30
      Vol:
    E99-D No:7
      Page(s):
    1796-1809

    SSDs consist of non-mechanical components (host interface, control core, DRAM, flash memory, etc.) whose integrated behavior is not well-known. This makes an SSD seem like a black-box to users. We analyzed power consumption of four SSDs with standard I/O operations. We find the following: (a) the power consumption of SSDs is not significantly lower than that of HDDs, (b) all SSDs we tested had similar power consumption patterns which, we assume, is a result of their internal parallelism. SSDs have a parallel architecture that connects flash memories by channel or by way. This parallel architecture improves performance of SSDs if the information is known to the file system. This paper proposes three SSD characterization algorithms to infer the characteristics of SSD, such as internal parallelism, I/O unit, and page allocation scheme, by measuring its power consumption with various sized workloads. These algorithms are applied to four real SSDs to find: (i) the internal parallelism to decide whether to perform I/Os in a concurrent or an interleaved manner, (ii) the I/O unit size that determines the maximum size that can be assigned to a flash memory, and (iii) a page allocation method to map the logical address of write operations, which are requested from the host to the physical address of flash memory. We developed a data sampling method to provide consistency in collecting power consumption patterns of each SSD. When we applied three algorithms to four real SSDs, we found flash memory configurations, I/O unit sizes, and page allocation schemes. We show that the performance of SSD can be improved by aligning the record size of file system with I/O unit of SSD, which we found by using our algorithm. We found that Q Pro has I/O unit of 32 KB, and by aligning the file system record size to 32 KB, the performance increased by 201% and energy consumption decreased by 85%, which compared to the record size of 4 KB.

  • Dynamic Measurements of Intrabody Communication Channels and Their Dependences on Grounding Conditions

    Nozomi HAGA  Yusaku KASAHARA  Kuniyuki MOTOJIMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:6
      Page(s):
    1380-1385

    In the development of intrabody communication systems, it is important to understand the effects of user's posture on the communication channels. In this study, dynamic measurements of intrabody communication channels were made and their dependences on the grounding conditions were investigated. Furthermore, the physical mechanism of the dynamic communication channels was discussed based on electrostatic simulations. According to the measured and the simulated results, the variations in the signal transmission characteristics depend not only on the distance between the Tx and the Rx but also on the shadowing by body parts.

  • Extended Dual Virtual Paths Algorithm Considering the Timing Requirements of IEC61850 Substation Message Types

    Seokjoon HONG  Ducsun LIM  Inwhee JOE  

     
    PAPER-Information Network

      Pubricized:
    2016/03/07
      Vol:
    E99-D No:6
      Page(s):
    1563-1575

    The high-availability seamless redundancy (HSR) protocol is a representative protocol that fulfills the reliability requirements of the IEC61850-based substation automation system (SAS). However, it has the drawback of creating unnecessary traffic in a network. To solve this problem, a dual virtual path (DVP) algorithm based on HSR was recently presented. Although this algorithm dramatically reduces network traffic, it does not consider the substation timing requirements of messages in an SAS. To reduce unnecessary network traffic in an HSR ring network, we introduced a novel packet transmission (NPT) algorithm in a previous work that considers IEC61850 message types. To further reduce unnecessary network traffic, we propose an extended dual virtual paths (EDVP) algorithm in this paper that considers the timing requirements of IEC61850 message types. We also include sending delay (SD), delay queue (DQ), and traffic flow latency (TFL) features in our proposal. The source node sends data frames without SDs on the primary paths, and it transmits the duplicate data frames with SDs on the secondary paths. Since the EDVP algorithm discards all of the delayed data frames in DQs when there is no link or node failure, unnecessary network traffic can be reduced. We demonstrate the principle of the EDVP algorithm and its performance in terms of network traffic compared to the standard HSR, NPT, and DVP algorithm using the OPNET network simulator. Throughout the simulation results, the EDVP algorithm shows better traffic performance than the other algorithms, while guaranteeing the timing requirements of IEC61850 message types. Most importantly, when the source node transmits heavy data traffic, the EDVP algorithm shows greater than 80% and 40% network traffic reduction compared to the HSR and DVP approaches, respectively.

  • Adaptive Perceptual Block Compressive Sensing for Image Compression

    Jin XU  Yuansong QIAO  Zhizhong FU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/03/09
      Vol:
    E99-D No:6
      Page(s):
    1702-1706

    Because the perceptual compressive sensing framework can achieve a much better performance than the legacy compressive sensing framework, it is very promising for the compressive sensing based image compression system. In this paper, we propose an innovative adaptive perceptual block compressive sensing scheme. Firstly, a new block-based statistical metric which can more appropriately measure each block's sparsity and perceptual sensibility is devised. Then, the approximated theoretical minimum measurement number for each block is derived from the new block-based metric and used as weight for adaptive measurements allocation. The obtained experimental results show that our scheme can significantly enhance both objective and subjective performance of a perceptual compressive sensing framework.

181-200hit(1013hit)