The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] REM(1013hit)

41-60hit(1013hit)

  • Polarity Classification of Social Media Feeds Using Incremental Learning — A Deep Learning Approach

    Suresh JAGANATHAN  Sathya MADHUSUDHANAN  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2021/09/15
      Vol:
    E105-A No:3
      Page(s):
    584-593

    Online feeds are streamed continuously in batches with varied polarities at varying times. The system handling the online feeds must be trained to classify all the varying polarities occurring dynamically. The polarity classification system designed for the online feeds must address two significant challenges: i) stability-plasticity, ii) category-proliferation. The challenges faced in the polarity classification of online feeds can be addressed using the technique of incremental learning, which serves to learn new classes dynamically and also retains the previously learned knowledge. This paper proposes a new incremental learning methodology, ILOF (Incremental Learning of Online Feeds) to classify the feeds by adopting Deep Learning Techniques such as RNN (Recurrent Neural Networks) and LSTM (Long Short Term Memory) and also ELM (Extreme Learning Machine) for addressing the above stated problems. The proposed method creates a separate model for each batch using ELM and incrementally learns from the trained batches. The training of each batch avoids the retraining of old feeds, thus saving training time and memory space. The trained feeds can be discarded when new batch of feeds arrives. Experiments are carried out using the standard datasets comprising of long feeds (IMDB, Sentiment140) and short feeds (Twitter, WhatsApp, and Twitter airline sentiment) and the proposed method showed positive results in terms of better performance and accuracy.

  • Generalization of Limit Theorems for Connected-(r, s)-out-of- (m, n):F Lattice Systems

    Koki YAMADA  Taishin NAKAMURA  Hisashi YAMAMOTO  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Pubricized:
    2021/09/13
      Vol:
    E105-A No:3
      Page(s):
    562-570

    In the field of reliability engineering, many studies on the relationship of reliability between components and the entire system have been conducted since the 1960s. Various properties of large-scale systems can be studied by limit theorems. In addition, the limit theorem can provide an approximate system reliability. Existing studies have established the limit theorems of a connected-(r, s)-out-of-(m, n):F lattice system consisting of components with the same reliability. However, the existing limit theorems are constrained in terms of (a) the system shape and (b) the condition under which the theorem can be applied. Therefore, this study generalizes the existing limit theorems along the two aforementioned directions. The limit theorem established in this paper can be useful for revealing the properties of the reliability of a large-scale connected-(r, s)-out-of-(m, n):F lattice system.

  • Status Update for Accurate Remote Estimation: Centralized and Decentralized Schemes Open Access

    Jingzhou SUN  Yuxuan SUN  Sheng ZHOU  Zhisheng NIU  

     
    INVITED PAPER

      Pubricized:
    2021/08/17
      Vol:
    E105-B No:2
      Page(s):
    131-139

    In this work, we consider a remote estimation system where a remote controller estimates the status of heterogeneous sensing devices with the information delivered over wireless channels. Status of heterogeneous devices changes at different speeds. With limited wireless resources, estimating as accurately as possible requires careful design of status update schemes. Status update schemes can be divided into two classes: centralized and decentralized. In centralized schemes, a central scheduler coordinates devices to avoid potential collisions. However, in decentralized schemes where each device updates on its own, update decisions can be made by using the current status which is unavailable in centralized schemes. The relation between these two schemes under the heterogeneous devices case is unclear, and thus we study these two schemes in terms of the mean square error (MSE) of the estimation. For centralized schemes, since the scheduler does not have the current status of each device, we study policies where the scheduling decisions are based on age of information (AoI), which measures the staleness of the status information held in the controller. The optimal scheduling policy is provided, along with the corresponding MSE. For decentralized schemes, we consider deviation-based policies with which only devices with estimation deviations larger than prescribed thresholds may update, and the others stay idle. We derive an approximation of the minimum MSE under the deviation-based policies and show that it is e/3 of the minimum MSE under the AoI-based policies. Simulation results further show that the actual minimum MSEs of these two policies are even closer than that shown by the approximation, which indicates that the cost of collision in the deviation-based policy cancels out the gain from exploiting status deviations.

  • Image Adjustment for Multi-Exposure Images Based on Convolutional Neural Networks

    Isana FUNAHASHI  Taichi YOSHIDA  Xi ZHANG  Masahiro IWAHASHI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2021/10/21
      Vol:
    E105-D No:1
      Page(s):
    123-133

    In this paper, we propose an image adjustment method for multi-exposure images based on convolutional neural networks (CNNs). We call image regions without information due to saturation and object moving in multi-exposure images lacking areas in this paper. Lacking areas cause the ghosting artifact in fused images from sets of multi-exposure images by conventional fusion methods, which tackle the artifact. To avoid this problem, the proposed method estimates the information of lacking areas via adaptive inpainting. The proposed CNN consists of three networks, warp and refinement, detection, and inpainting networks. The second and third networks detect lacking areas and estimate their pixel values, respectively. In the experiments, it is observed that a simple fusion method with the proposed method outperforms state-of-the-art fusion methods in the peak signal-to-noise ratio. Moreover, the proposed method is applied for various fusion methods as pre-processing, and results show obviously reducing artifacts.

  • An FPGA-Based Optimizer Design for Distributed Deep Learning with Multiple GPUs

    Tomoya ITSUBO  Michihiro KOIBUCHI  Hideharu AMANO  Hiroki MATSUTANI  

     
    PAPER

      Pubricized:
    2021/07/01
      Vol:
    E104-D No:12
      Page(s):
    2057-2067

    Since deep learning workloads perform a large number of matrix operations on training data, GPUs (Graphics Processing Units) are efficient especially for the training phase. A cluster of computers each of which equips multiple GPUs can significantly accelerate the deep learning workloads. More specifically, a back-propagation algorithm following a gradient descent approach is used for the training. Although the gradient computation is still a major bottleneck of the training, gradient aggregation and optimization impose both communication and computation overheads, which should also be reduced for further shortening the training time. To address this issue, in this paper, multiple GPUs are interconnected with a PCI Express (PCIe) over 10Gbit Ethernet (10GbE) technology. Since these remote GPUs are interconnected with network switches, gradient aggregation and optimizers (e.g., SGD, AdaGrad, Adam, and SMORMS3) are offloaded to FPGA-based 10GbE switches between remote GPUs; thus, the gradient aggregation and parameter optimization are completed in the network. The proposed FPGA-based 10GbE switches with the four optimizers are implemented on NetFPGA-SUME board. Their resource utilizations are increased by PEs for the optimizers, and they consume up to 56% of the resources. Evaluation results using four remote GPUs connected via the proposed FPGA-based switch demonstrate that these optimizers are accelerated by up to 3.0x and 1.25x compared to CPU and GPU implementations, respectively. Also, the gradient aggregation throughput by the FPGA-based switch achieves up to 98.3% of the 10GbE line rate.

  • Neural Incremental Speech Recognition Toward Real-Time Machine Speech Translation

    Sashi NOVITASARI  Sakriani SAKTI  Satoshi NAKAMURA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/08/27
      Vol:
    E104-D No:12
      Page(s):
    2195-2208

    Real-time machine speech translation systems mimic human interpreters and translate incoming speech from a source language to the target language in real-time. Such systems can be achieved by performing low-latency processing in ASR (automatic speech recognition) module before passing the output to MT (machine translation) and TTS (text-to-speech synthesis) modules. Although several studies recently proposed sequence mechanisms for neural incremental ASR (ISR), these frameworks have a more complicated training mechanism than the standard attention-based ASR because they have to decide the incremental step and learn the alignment between speech and text. In this paper, we propose attention-transfer ISR (AT-ISR) that learns the knowledge from attention-based non-incremental ASR for a low delay end-to-end speech recognition. ISR comes with a trade-off between delay and performance, so we investigate how to reduce AT-ISR delay without a significant performance drop. Our experiment shows that AT-ISR achieves a comparable performance to the non-incremental ASR when the incremental recognition begins after the speech utterance reaches 25% of the complete utterance length. Additional experiments to investigate the effect of ISR on translation tasks are also performed. The focus is to find the optimum granularity of the output unit. The results reveal that our end-to-end subword-level ISR resulted in the best translation quality with the lowest WER and the lowest uncovered-word rate.

  • Performance Modeling of Bitcoin Blockchain: Mining Mechanism and Transaction-Confirmation Process Open Access

    Shoji KASAHARA  

     
    INVITED PAPER

      Pubricized:
    2021/06/09
      Vol:
    E104-B No:12
      Page(s):
    1455-1464

    Bitcoin is one of popular cryptocurrencies widely used over the world, and its blockchain technology has attracted considerable attention. In Bitcoin system, it has been reported that transactions are prioritized according to transaction fees, and that transactions with high priorities are likely to be confirmed faster than those with low priorities. In this paper, we consider performance modeling of Bitcoin-blockchain system in order to characterize the transaction-confirmation time. We first introduce the Bitcoin system, focusing on proof-of-work, the consensus mechanism of Bitcoin blockchain. Then, we show some queueing models and its analytical results, discussing the implications and insights obtained from the queueing models.

  • A Design Methodology of Wi-Fi RTT Ranging for Lateration

    Tetsuya MANABE  Koichi AIHARA  Naoki KOJIMA  Yusuke HIRAYAMA  Taichi SUZUKI  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2021/06/01
      Vol:
    E104-A No:12
      Page(s):
    1704-1713

    This paper indicates a design methodology of Wi-Fi round-trip time (RTT) ranging for lateration through the performance evaluation experiments. The Wi-Fi RTT-based lateration needs to operate plural access points (APs) at the same time. However, the relationship between the number of APs in operation and ranging performance has not been clarified in the conventional researches. Then, we evaluate the ranging performance of Wi-Fi RTT for lateration focusing on the number of APs and channel-usage conditions. As the results, we confirm that the ranging result acquisition rates decreases caused by increasing the number of APs simultaneously operated and/or increasing the channel-usage rates. In addition, based on positioning performance comparison between the Wi-Fi RTT-based lateration and the Wi-Fi fingerprint method, we clarify the points of notice that positioning by Wi-Fi RTT-based lateration differs from the conventional radio-intensity-based positioning. Consequently, we show a design methodology of Wi-Fi RTT ranging for lateration as the following three points: the important indicators for evaluation, the severeness of the channel selection, and the number of APs for using. The design methodology will help to realize the high-quality location-based services.

  • The Uncontrolled Web: Measuring Security Governance on the Web

    Yuta TAKATA  Hiroshi KUMAGAI  Masaki KAMIZONO  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:11
      Page(s):
    1828-1838

    While websites are becoming more and more complex daily, the difficulty of managing them is also increasing. It is important to conduct regular maintenance against these complex websites to strengthen their security and improve their cyber resilience. However, misconfigurations and vulnerabilities are still being discovered on some pages of websites and cyberattacks against them are never-ending. In this paper, we take the novel approach of applying the concept of security governance to websites; and, as part of this, measuring the consistency of software settings and versions used on these websites. More precisely, we analyze multiple web pages with the same domain name and identify differences in the security settings of HTTP headers and versions of software among them. After analyzing over 8,000 websites of popular global organizations, our measurement results show that over half of the tested websites exhibit differences. For example, we found websites running on a web server whose version changes depending on access and using a JavaScript library with different versions across over half of the tested pages. We identify the cause of such governance failures and propose improvement plans.

  • A Modulus Factorization Algorithm for Self-Orthogonal and Self-Dual Quasi-Cyclic Codes via Polynomial Matrices Open Access

    Hajime MATSUI  

     
    LETTER-Coding Theory

      Pubricized:
    2021/05/21
      Vol:
    E104-A No:11
      Page(s):
    1649-1653

    A construction method of self-orthogonal and self-dual quasi-cyclic codes is shown which relies on factorization of modulus polynomials for cyclicity in this study. The smaller-size generator polynomial matrices are used instead of the generator matrices as linear codes. An algorithm based on Chinese remainder theorem finds the generator polynomial matrix on the original modulus from the ones constructed on each factor. This method enables us to efficiently construct and search these codes when factoring modulus polynomials into reciprocal polynomials.

  • Constructions of Binary Sequence Pairs of Length 5q with Optimal Three-Level Correlation

    Xiumin SHEN  Xiaofei SONG  Yanguo JIA  Yubo LI  

     
    LETTER-Coding Theory

      Pubricized:
    2021/04/14
      Vol:
    E104-A No:10
      Page(s):
    1435-1439

    Binary sequence pairs with optimal periodic correlation have important applications in many fields of communication systems. In this letter, four new families of binary sequence pairs are presented based on the generalized cyclotomy over Z5q, where q ≠ 5 is an odd prime. All these binary sequence pairs have optimal three-level correlation values {-1, 3}.

  • ZigZag Antenna Configuration for MmWave V2V with Relay in Typical Road Scenarios: Design, Analysis and Experiment

    Yue YIN  Haoze CHEN  Zongdian LI  Tao YU  Kei SAKAGUCHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/04/09
      Vol:
    E104-B No:10
      Page(s):
    1307-1317

    Communication systems operating in the millimeter-wave (mmWave) band have the potential to realize ultra-high throughput and ultra-low latency vehicle-to-vehicle (V2V) communications in 5G and beyond wireless networks. Moreover, because of the weak penetration nature of mmWave, one mmWave channel can be reused in all V2V links, which improves the spectrum efficiency. Although the outstanding performance of the mmWave above has been widely acknowledged, there are still some shortcomings. One of the unavoidable defects is multipath interference. Even though the direct interference link cannot penetrate vehicle bodies, other interference degrades the throughput of the mmWave V2V communication. In this paper, we focus on the multipath interference caused by signal reflections from roads and surroundings, where the interference strength varies in road scenarios. Firstly, we analyze the multipath channel models of mmWave V2V with relay in three typical road scenarios (single straight roads, horizontal curves, and slopes). Their interference differences are clarified. Based on the analysis, a novel method of ZigZag antenna configuration is proposed to guarantee the required data rate. Secondly, the performance of the proposed method is evaluated by simulation. It proves that the ZigZag antenna configuration with an optimal antenna height can significantly suppress the destructive interference, and ensure a throughput over 1Gbps comparing to the conventional antenna configuration at 60GHz band. Furthermore, the effectiveness of ZigZag antenna configuration is demonstrated on a single straight road by outdoor experiments.

  • Convex and Differentiable Formulation for Inverse Problems in Hilbert Spaces with Nonlinear Clipping Effects Open Access

    Natsuki UENO  Shoichi KOYAMA  Hiroshi SARUWATARI  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2021/02/25
      Vol:
    E104-A No:9
      Page(s):
    1293-1303

    We propose a useful formulation for ill-posed inverse problems in Hilbert spaces with nonlinear clipping effects. Ill-posed inverse problems are often formulated as optimization problems, and nonlinear clipping effects may cause nonconvexity or nondifferentiability of the objective functions in the case of commonly used regularized least squares. To overcome these difficulties, we present a tractable formulation in which the objective function is convex and differentiable with respect to optimization variables, on the basis of the Bregman divergence associated with the primitive function of the clipping function. By using this formulation in combination with the representer theorem, we need only to deal with a finite-dimensional, convex, and differentiable optimization problem, which can be solved by well-established algorithms. We also show two practical examples of inverse problems where our theory can be applied, estimation of band-limited signals and time-harmonic acoustic fields, and evaluate the validity of our theory by numerical simulations.

  • A Study on Extreme Wideband 6G Radio Access Technologies for Achieving 100Gbps Data Rate in Higher Frequency Bands Open Access

    Satoshi SUYAMA  Tatsuki OKUYAMA  Yoshihisa KISHIYAMA  Satoshi NAGATA  Takahiro ASAI  

     
    INVITED PAPER

      Pubricized:
    2021/04/01
      Vol:
    E104-B No:9
      Page(s):
    992-999

    In sixth-generation (6G) mobile communication system, it is expected that extreme high data rate communication with a peak data rate over 100Gbps should be provided by exploiting higher frequency bands in addition to millimeter-wave bands such as 28GHz. The higher frequency bands are assumed to be millimeter wave and terahertz wave where the extreme wider bandwidth is available compared with 5G, and hence 6G needs to promote research and development to exploit so-called terahertz wave targeting the frequency from 100GHz to 300GHz. In the terahertz wave, there are fundamental issues that rectilinearity and pathloss are higher than those in the 28GHz band. In order to solve these issues, it is very important to clarify channel characteristics of the terahertz wave and establish a channel model, to advance 6G radio access technologies suitable for the terahertz wave based on the channel model, and to develop radio-frequency device technologies for such higher frequency bands. This paper introduces a direction of studies on 6G radio access technologies to explore the higher frequency bands and technical issues on the device technologies, and then basic computer simulations in 100Gbps transmission using 100GHz band clarify a potential of extreme high data rate over 100Gbps.

  • Time-Series Measurement of Parked Domain Names and Their Malicious Uses

    Takayuki TOMATSURI  Daiki CHIBA  Mitsuaki AKIYAMA  Masato UCHIDA  

     
    PAPER

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    770-780

    On the Internet, there are lots of unused domain names that are not used for any actual services. Domain parking is a monetization mechanism for displaying online advertisements in such unused domain names. Some domain names used in cyber attacks are known to leverage domain parking services after the attack. However, the temporal relationships between domain parking services and malicious domain names have not been studied well. In this study, we investigated how malicious domain names using domain parking services change over time. We conducted a large-scale measurement study of more than 66.8 million domain names that have used domain parking services in the past 19 months. We reveal the existence of 3,964 domain names that have been malicious after using domain parking. We further identify what types of malicious activities (e.g., phishing and malware) such malicious domain names tend to be used for. We also reveal the existence of 3.02 million domain names that utilized multiple parking services simultaneously or while switching between them. Our study can contribute to the efficient analysis of malicious domain names using domain parking services.

  • An Intent-Based System Configuration Design for IT/NW Services with Functional and Quantitative Constraints Open Access

    Takuya KUWAHARA  Takayuki KURODA  Takao OSAKI  Kozo SATODA  

     
    PAPER

      Pubricized:
    2021/02/04
      Vol:
    E104-B No:7
      Page(s):
    791-804

    Network service providers need to appropriately design systems and carefully configuring the settings and parameters to ensure that the systems keep running consistently and deliver the desired services. This can be a heavy and error-prone task. Intent-based system design methods have been developed to help with such tasks. These methods receive service-level requirements and generate service configurations to fulfill the given requirements. One such method is search-based system design, which can flexibly generate systems of various architectures. However, it has difficulty dealing with constraints on the quantitative parameters of systems, e.g., disk volume, RAM size, and QoS. To deal with practical cases, intent-based system design engines need to be able to handle quantitative parameters and constraints. In this work, we propose a new intent-based system design method based on search-based design that augments search states with quantitative constraints. Our method can generate a system that meets both functional and quantitative service requirements by combining a search-based design method with constraint checking. Experimental results show that our method can automatically generate a system that fulfills all given requirements within a reasonable computation time.

  • Distributed Detection of MIMO Spatial Multiplexed Signals in Terminal Collaborated Reception

    Fengning DU  Hidekazu MURATA  Mampei KASAI  Toshiro NAKAHIRA  Koichi ISHIHARA  Motoharu SASAKI  Takatsune MORIYAMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/29
      Vol:
    E104-B No:7
      Page(s):
    884-892

    Distributed detection techniques of multiple-input multiple-output (MIMO) spatially multiplexed signals are studied in this paper. This system considered employs multiple mobile stations (MSs) to receive signals from a base station, and then share their received signal waveforms with collaborating MSs. In order to reduce the amount of traffic over the collaborating wireless links, distributed detection techniques are proposed, in which multiple MSs are in charge of detection by making use of both the shared signal waveforms and its own received waveform. Selection combining schemes of detected bit sequences are studied to finalize the decisions. Residual error coefficients in iterative MIMO equalization and detection are utilized in this selection. The error-ratio performance is elucidated not only by computer simulations, but also by offline processing using experimental signals recorded in a measurement campaign.

  • Video Smoke Removal from a Single Image Sequence Open Access

    Shiori YAMAGUCHI  Keita HIRAI  Takahiko HORIUCHI  

     
    PAPER

      Pubricized:
    2021/01/07
      Vol:
    E104-A No:6
      Page(s):
    876-886

    In this study, we present a novel method for removing smoke from videos based on a single image sequence. Smoke is a significant artifact in images or videos because it can reduce the visibility in disaster scenes. Our proposed method for removing smoke involves two main processes: (1) the development of a smoke imaging model and (2) smoke removal using spatio-temporal pixel compensation. First, we model the optical phenomena in natural scenes including smoke, which is called a smoke imaging model. Our smoke imaging model is developed by extending conventional haze imaging models. We then remove the smoke from a video in a frame-by-frame manner based on the smoke imaging model. Next, we refine the appearance of the smoke-free video by spatio-temporal pixel compensation, where we align the smoke-free frames using the corresponding pixels. To obtain the corresponding pixels, we use SIFT and color features with distance constraints. Finally, in order to obtain a clear video, we refine the pixel values based on the spatio-temporal weightings of the corresponding pixels in the smoke-free frames. We used simulated and actual smoke videos in our validation experiments. The experimental results demonstrated that our method can obtain effective smoke removal results from dynamic scenes. We also quantitatively assessed our method based on a temporal coherence measure.

  • Two-Sided LPC-Based Speckle Noise Removal for Laser Speech Detection Systems

    Yahui WANG  Wenxi ZHANG  Xinxin KONG  Yongbiao WANG  Hongxin ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/03/17
      Vol:
    E104-D No:6
      Page(s):
    850-862

    Laser speech detection uses a non-contact Laser Doppler Vibrometry (LDV)-based acoustic sensor to obtain speech signals by precisely measuring voice-generated surface vibrations. Over long distances, however, the detected signal is very weak and full of speckle noise. To enhance the quality and intelligibility of the detected signal, we designed a two-sided Linear Prediction Coding (LPC)-based locator and interpolator to detect and replace speckle noise. We first studied the characteristics of speckle noise in detected signals and developed a binary-state statistical model for speckle noise generation. A two-sided LPC-based locator was then designed to locate the polluted samples, composed of an inverse decorrelator, nonlinear filter and threshold estimator. This greatly improves the detectability of speckle noise and avoids false/missed detection by improving the noise-to-signal-ratio (NSR). Finally, samples from both sides of the speckle noise were used to estimate the parameters of the interpolator and to code samples for replacing the polluted samples. Real-world speckle noise removal experiments and simulation-based comparative experiments were conducted and the results show that the proposed method is better able to locate speckle noise in laser detected speech and highly effective at replacing it.

  • AirMatch: An Automated Mosaicing System with Video Preprocessing Engine for Multiple Aerial Feeds

    Nida RASHEED  Waqar S. QURESHI  Shoab A. KHAN  Manshoor A. NAQVI  Eisa ALANAZI  

     
    PAPER-Software System

      Pubricized:
    2021/01/14
      Vol:
    E104-D No:4
      Page(s):
    490-499

    Surveillance through aerial systems is in place for years. Such systems are expensive, and a large fleet is in operation around the world without upgrades. These systems have low resolution and multiple analog cameras on-board, with Digital Video Recorders (DVRs) at the control station. Generated digital videos have multi-scenes from multi-feeds embedded in a single video stream and lack video stabilization. Replacing on-board analog cameras with the latest digital counterparts requires huge investment. These videos require stabilization and other automated video analysis prepossessing steps before passing it to the mosaicing algorithm. Available mosaicing software are not tailored to segregate feeds from different cameras and scenes, automate image enhancements, and stabilize before mosaicing (image stitching). We present "AirMatch", a new automated system that first separates camera feeds and scenes, then stabilize and enhance the video feed of each camera; generates a mosaic of each scene of every feed and produce a super quality mosaic by stitching mosaics of all feeds. In our proposed solution, state-of-the-art video analytics techniques are tailored to work on videos from vintage cameras in aerial applications. Our new framework is independent of specialized hardware requirements and generates effective mosaics. Affine motion transform with smoothing Gaussian filter is selected for the stabilization of videos. A histogram-based method is performed for scene change detection and image contrast enhancement. Oriented FAST and rotated BRIEF (ORB) is selected for feature detection and descriptors in video stitching. Several experiments on a number of video streams are performed and the analysis shows that our system can efficiently generate mosaics of videos with high distortion and artifacts, compared with other commercially available mosaicing software.

41-60hit(1013hit)