The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RIN(2923hit)

1661-1680hit(2923hit)

  • Single Code-Based Dynamic Grouping with Cycle Interleaving Algorithm for Reducing Waste Rate in WCDMA Cellular Networks

    Ben-Jye CHANG  Min-Xiou CHEN  Ren-Hung HWANG  Kun-Chan TSAI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3306-3318

    3G must offer high data rates since it should support real-time multimedia services; one performance enhancement, the use of the OVSF code tree, has adopted in 3G WCDMA networks. Unfortunately, this technique allows the link capacity to be set at the base rate times powers of two. This results in wasting bandwidth while the required rate is not powers of two of the basic rate. Several multi-code assignment mechanisms have been proposed to reduce the waste rate, but incur some drawbacks, including high complexity of handling multiple codes and increasing cost of using more rake combiners. Our solution is a dynamic grouping code assignment that allows any rate to be achieved with a single code for any possible rate of traffic. The dynamic grouping approach first forms several calls into a group. It then allocates a subtree to the group and dynamically shares the subtree codes based on time-sharing of slots within a group cycle time. The waste rate and code blocking is thus reduced significantly. Since transmission delay and jitter may occur in such a time-sharing approach, two schemes of cycle interleaving are proposed to minimize delay and jitter. Numerical results demonstrate that the proposed approach reduces the waste rate and increases the system utilization obviously, and the proposed cycle interleaving schemes minimizes delay and jitter significantly.

  • Novel Compact Microstrip Dual-Mode Ring Resonator Wideband Bandpass Filter with Significantly Improved Stopband Property

    Peng CAI  Zhewang MA  Xuehui GUAN  Yoshio KOBAYASHI  Tetsuo ANADA  

     
    PAPER-Passive Circuits/Components

      Vol:
    E89-C No:12
      Page(s):
    1858-1864

    A novel wideband bandpass filter with improved stopband characteristics is presented in this paper. Dual-mode square ring resonator is used in the proposed filter. New formulas based on the even- and odd-mode analysis are derived to facilitate the design of transmission zeros of the square ring resonator. A short-circuited stub and a piece of aperture-enhanced parallel-coupled lines are introduced to the input and output of the resonator to lower the passband return loss and widen the stopband of the filter significantly. The filter has a 50% fractional bandwidth, is compact in configuration, and shows remarkably improved performance compared with previously reported filters of the same kind. The measured filtering response shows a good agreement with the simulated result.

  • Time Complexity Analysis of the Legal Firing Sequence Problem of Petri Nets with Inhibitor Arcs

    Satoshi TAOKA  Toshimasa WATANABE  

     
    PAPER-Concurrent Systems

      Vol:
    E89-A No:11
      Page(s):
    3216-3226

    Petri nets with inhibitor arcs are referred to as inhibitor-arc Petri nets. It is shown that modeling capability of inhibitor-arc Petri nets is equivalent to that of Turing machines. The subject of this paper is the legal firing sequence problem (INLFS) for inhibitor-arc Petri nets: given an inhibitor-arc Petri net IN, an initial marking M0 and a firing count vector X, find a firing sequence δ such that its firing starts from M0 and each transition t appears in δ exactly X(t) times as prescribed by X. The paper is the first step of research for time complexity analysis and designing algorithms of INLFS, one of the most fundamental problems for inhibitor-arc Petri nets having more modeling capability than ordinary Peri nets. The recognition version of INLFS, denoted as RINLFS, means a decision problem, asking a "yes" or "no" answer on the existence of a solution δ to INLFS. The main results are the following (1) and (2). (1) Proving (1-1) and (1-2) when the underlying Petri net of IN is an unweighted state machine: (1-1) INLFS can be solved in pseudo-polynomial (O(|X|)) time for IN of non-adjacent type having only one special place called a rivet; (1-2) RINLFS is NP-hard for IN with at least three rivets; (2) Proving that RINLFS for IN whose underlying Petri net is unweighted and forward conflict-free is NP-hard. Heuristic algorithms for solving INLFS are going to be proposed in separate papers.

  • Pitch-Synchronous Peak-Amplitude (PS-PA)-Based Feature Extraction Method for Noise-Robust ASR

    Muhammad GHULAM  Kouichi KATSURADA  Junsei HORIKAWA  Tsuneo NITTA  

     
    PAPER-Speech and Hearing

      Vol:
    E89-D No:11
      Page(s):
    2766-2774

    A novel pitch-synchronous auditory-based feature extraction method for robust automatic speech recognition (ASR) is proposed. A pitch-synchronous zero-crossing peak-amplitude (PS-ZCPA)-based feature extraction method was proposed previously and it showed improved performances except when modulation enhancement was integrated with Wiener filter (WF)-based noise reduction and auditory masking. However, since zero-crossing is not an auditory event, we propose a new pitch-synchronous peak-amplitude (PS-PA)-based method to render the feature extractor of ASR more auditory-like. We also examine the effects of WF-based noise reduction, modulation enhancement, and auditory masking in the proposed PS-PA method using the Aurora-2J database. The experimental results show superiority of the proposed method over the PS-ZCPA and other conventional methods. Furthermore, the problem due to the reconstruction of zero-crossings from a modulated envelope is eliminated. The experimental results also show the superiority of PS over PA in terms of the robustness of ASR, though PS and PA lead to significant improvement when applied together.

  • Goal Oriented Requirements Engineering: Trends and Issues

    Shuichiro YAMAMOTO  Haruhiko KAIYA  Karl COX  Steven BLEISTEIN  

     
    INVITED PAPER

      Vol:
    E89-D No:11
      Page(s):
    2701-2711

    Research has been actively proposed into how to specify requirements in the upper stream of software development. For example, the main research issues regarding Structured Analysis and Object Oriented Analysis methodologies include requirements elicitation, modeling, and validation of specifications to give a starting point for software development. At the same time, another area of research has emerged that recognizes the importance of guaranteeing requirements quality by goals. As the impact of IT penetrates to mobile devices, information appliances and automobiles, goal oriented requirements engineering (GORE) approaches for performance and safety in embedded systems have been proposed. Non-Functional Requirements (NFRs) such as business strategy, security and privacy, are now being formalized by Requirements Engineering (RE) technologies, because enterprise business is now heavily influenced by IT, for example in e-Business. As IT is fast becoming ubiquitous in society, the importance of Goal Orientation will increase as socio-technology enables visualization of the role of software in social systems. In this paper, we discuss the current states and trends of GORE from the viewpoints of both academia and industry.

  • Vertical Partitioning Method for Secret Sharing Distributed Database System

    Toshiyuki MIYAMOTO  Yasuhiro MORITA  Sadatoshi KUMAGAI  

     
    PAPER-Concurrent Systems

      Vol:
    E89-A No:11
      Page(s):
    3244-3249

    Secret sharing is a method for distributing a secret among a party of participants. Each of them is allocated a share of the secret, and the secret can only be reconstructed when the shares are combined together. We have been proposing a secret sharing distributed database system (SSDDB) that uses a secret sharing scheme to improve confidentiality and robustness of distributed database systems. This paper proposes a vertical partitioning algorithm for the SSDDB, and evaluates the algorithm by computational experiments.

  • Asymptotical Optimality of Two Variations of Lempel-Ziv Codes for Sources with Countably Infinite Alphabet

    Tomohiko UYEMATSU  Fumio KANAYA  

     
    PAPER-Source Coding

      Vol:
    E89-A No:10
      Page(s):
    2459-2465

    This paper considers the universal coding problem for stationary ergodic sources with countably infinite alphabets. We propose modified versions of LZ77 and LZ78 codes for sources with countably infinite alphabets. Then, we show that for any source µ with Eµ[log X1]<∞, both codes are asymptotically optimum, i.e. the code length per input symbol approaches its entropy rate with probability one. Further, we show that we can modify LZ77 and LZ78 codes so that both are asymptotically optimal for a family of ergodic sources satisfying Kieffer's condition.

  • Physical Register Sharing through Value Similarity Detection

    In Pyo HONG  Ha Young JEONG  Yong Surk LEE  

     
    LETTER-Computer Systems

      Vol:
    E89-D No:10
      Page(s):
    2678-2681

    Modern processors have large instruction windows to improve performance. They usually adopt register renaming, where every active instruction with a valid destination needs a physical register. As the instruction windows get larger, however, bigger physical register files are required. To solve this problem, we proposed a physical register sharing technique. It shares a physical register among multiple instructions based on a value similarity. As a result, we achieved performance improvement without increasing the size of the physical register file. In addition, the proposed technique can also be used to reduce the timing, complexity and area overhead of the physical register file.

  • Soft Decision Decoding of Boneh-Shaw Fingerprinting Codes

    Hans Georg SCHAATHUN  Marcel FERNANDEZ  

     
    PAPER-Cryptography

      Vol:
    E89-A No:10
      Page(s):
    2603-2608

    Collusion-secure codes are used for digital fingerprinting and for traitor tracing. In both cases, the goal is to prevent unauthorized copying of copyrighted material, by tracing at least one guilty user when illegal copies appear. The most well-known collusion-secure code is due to Boneh and Shaw (1995/98). In this paper we improve the decoding algorithm by using soft output from the inner decoder, and we show that this permits using significantly shorter codewords.

  • Fingerprinting Protocol Based on Distributed Providers Using Oblivious Transfer

    Urara SHINMYO  Minoru KURIBAYASHI  Masakatu MORII  Hatsukazu TANAKA  

     
    PAPER-Cryptography

      Vol:
    E89-A No:10
      Page(s):
    2597-2602

    For the construction of a large fingerprinting system, conventional protocols need many computations to provide each fingerprinted contents to each user. In order to reduce the computational cost, we introduce a new concept of distributed providers in the fingerprinting protocol. Before a sale, our practical fingerprinting protocol using a concept of secure oblivious transfer is performed between a contents supplier and each provider. Then each provider obtains fingerprinted contents such that each bit of fingerprinting information is embedded in each segment of the contents. When a user orders some contents to the supplier, each segment of the contents is distributed from each provider specified by the supplier. The selection of providers who distribute the segments of contents is executed based on the user's identity so that the sequence of embedded bits in the collected segments may indicate the user's identity.

  • Detecting Distributed Denial-of-Service Attacks by Analyzing TCP SYN Packets Statistically

    Yuichi OHSITA  Shingo ATA  Masayuki MURATA  

     
    PAPER-Internet

      Vol:
    E89-B No:10
      Page(s):
    2868-2877

    Distributed denial-of-service attacks on public servers have recently become more serious. More are SYN Flood attacks, since the malicious attackers can easily exploit the TCP specification to generate traffic making public servers unavailable. To assure that network services will not be interrupted, we need faster and more accurate defense mechanisms against malicious traffic, especially SYN Floods. One of the problems in detecting SYN Flood traffic is that server nodes or firewalls cannot distinguish the SYN packets of normal TCP connections from those of SYN Flood attack. Moreover, since the rate of normal network traffic may vary, we cannot use an explicit threshold of SYN arrival rates to detect SYN Flood traffic. In this paper we introduce a mechanism for detecting SYN Flood traffic more accurately by taking into consideration the time variation of arrival traffic. We first investigate the statistics of the arrival rates of both normal TCP SYN packets and SYN Flood attack packets. We then describe our new detection mechanism based on the statistics of SYN arrival rates. Our analytical results show that the arrival rate of normal TCP SYN packets can be modeled by a normal distribution and that our proposed mechanism can detect SYN Flood traffic quickly and accurately regardless of time variance of the traffic.

  • Rate Compatible Low-Density Parity-Check Codes Based on Progressively Increased Column Weights

    Chen ZHENG  Noriaki MIYAZAKI  Toshinori SUZUKI  

     
    PAPER-Coding Theory

      Vol:
    E89-A No:10
      Page(s):
    2493-2500

    Effective and simply realizable rate compatible low-density parity-check (LDPC) codes are proposed. A parity check matrix is constructed with the progressively increased column weights (PICW) order and adopted to achieve a punctured LDPC coding scheme for a wide range of the code rates of the rate compatible systems. Using the proposed rate compatible punctured LDPC codes, low complex adaptive communication systems, such as wireless communication systems, can be achieved with the reliable transmissions.

  • Filtering for Simple Threshold Systems: Self-Tuning, Mutual Information and Applications

    Takahiro HADA  Toyonori MUNAKATA  

     
    PAPER-Signal Processing

      Vol:
    E89-A No:10
      Page(s):
    2566-2574

    In this paper we discuss an adaptive process, which is based on the so-called self-tuning mechanism. We simplify this mechanism and apply it to a threshold system. From view points of information quantity and estimation accuracy we show this mechanism enhances information transmission through the threshold system. In addition we extend our theory so that it could be applied to a truncation coding.

  • An Entropy-Based Approach to Protecting Rating Systems from Unfair Testimonies

    Jianshu WENG  Chunyan MIAO  Angela GOH  

     
    PAPER-Contents Technology and Web Information Systems

      Vol:
    E89-D No:9
      Page(s):
    2502-2511

    How to mitigate the influence of unfair testimonies remains an open issue in the research of rating systems. Methods have been proposed to filter the unfair testimonies in order to mitigate the influence of unfair testimonies. However, existing methods depend on assumptions that ratings follow a particular distribution to carry out the testimony filtering. This constrains them in specific rating systems and hinders their applications in other reputation systems. Moreover, existing methods do not scale well with the increase of testimony number due to their iterative nature. In this paper, a novel entropy-based method is proposed to measure the testimony quality, based on which unfair testimonies are further filtered. The proposed method does not require the assumption regarding the rating distribution. Moreover, it scales linearly with the increase of the testimony number. Experimental results show that the proposed method is effective in mitigating the influence of various types of unfair testimonies.

  • Two-Dimensional Analysis of Guided Modes in a Metallic Electromagnetic Crystal Waveguide

    Hongting JIA  Kiyotoshi YASUMOTO  

     
    PAPER

      Vol:
    E89-C No:9
      Page(s):
    1291-1298

    A rigorous and simple method is proposed for analyzing guided modes of metallic electromagnetic crystal waveguides. The method is a combination of generalized reflection and transmission matrices and the mode-matching technique. Fast convergence, low computer cost, and high calculating precision are main advantages of the proposed method. This method can easily avoid the relative convergence phenomena than a classical mode-matching method, and the proposed formulation is very suitable to analyzing multilayered problems with very low computer cost. The existence of H-polarized modes in metallic electromagnetic crystal waveguides has been verified.

  • Clustering Environment Lights for an Efficient All-Frequency Relighting

    Henry JOHAN  Tomoyuki NISHITA  

     
    PAPER-Computer Graphics

      Vol:
    E89-D No:9
      Page(s):
    2562-2571

    We present a novel precomputed radiance transfer method for efficient relighting under all-frequency environment illumination. Environment illumination is represented as a set of environment lights. Each environment light comprises a direction and an intensity. In a preprocessing step, the environment lights are clustered into several clusters, taking into account only the light directions. By experiment, we confirmed that the environment lights can be clustered into a much smaller number of clusters than their original number. Given any environment illumination, sampled as an environment map, an efficient relighting is then achieved by computing the radiance using the precomputed clusters. The proposed method enables relighting under very high-resolution environment illumination. In addition, unlike previous approaches, the proposed method can efficiently perform relighting when some regions of the given environment illumination change.

  • Adaptive Beamforming with Robustness against Both Finite-Sample Effects and Steering Vector Mismatches

    Jing-Ran LIN  Qi-Cong PENG  Qi-Shan HUANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E89-A No:9
      Page(s):
    2356-2362

    A novel approach of robust adaptive beamforming (RABF) is presented in this paper, aiming at robustness against both finite-sample effects and steering vector mismatches. It belongs to the class of diagonal loading approaches with the loading level determined based on worst-case performance optimization. The proposed approach, however, is distinguished by two points. (1) It takes finite-sample effects into account and applies worst-case performance optimization to not only the constraints, but also the objective of the constrained quadratic equation, for which it is referred to as joint worst-case RABF (JW-RABF). (2) It suggests a simple closed-form solution to the optimal loading after some approximations, revealing how different factors affect the loading. Compared with many existing methods in this field, the proposed one achieves better robustness in the case of small sample data size as well as steering vector mismatches. Moreover, it is less computationally demanding for presenting a simple closed-form solution to the optimal loading. Numerical examples confirm the effectiveness of the proposed approach.

  • A New Two-Phase Approach to Fuzzy Modeling for Nonlinear Function Approximation

    Wooyong CHUNG  Euntai KIM  

     
    PAPER-Computation and Computational Models

      Vol:
    E89-D No:9
      Page(s):
    2473-2483

    Nonlinear modeling of complex irregular systems constitutes the essential part of many control and decision-making systems and fuzzy logic is one of the most effective algorithms to build such a nonlinear model. In this paper, a new approach to fuzzy modeling is proposed. The model considered herein is the well-known Sugeno-type fuzzy system. The fuzzy modeling algorithm suggested in this paper is composed of two phases: coarse tuning and fine tuning. In the first phase (coarse tuning), a successive clustering algorithm with the fuzzy validity measure (SCFVM) is proposed to find the number of the fuzzy rules and an initial fuzzy model. In the second phase (fine tuning), a moving genetic algorithm with partial encoding (MGAPE) is developed and used for optimized tuning of membership functions of the fuzzy model. Two computer simulation examples are provided to evaluate the performance of the proposed modeling approach and compare it with other modeling approaches.

  • Low Complexity Bit-Parallel Squarer for GF(2n) Defined by Irreducible Trinomials

    Sun-Mi PARK  Ku-Young CHANG  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E89-A No:9
      Page(s):
    2451-2452

    We present a bit-parallel squarer for GF(2n) defined by an irreducible trinomial xn +xk +1 using a shifted polynomial basis. The proposed squarer requires TX delay and at most n/2 XOR gates, where TX is the delay of one XOR gate. As a result, the squarer using the shifted polynomial basis is more efficient than one using the polynomial basis except for k=1 or n/2.

  • A Cooperative Mechanism for Hybrid P2P File-Sharing Networks to Enhance Application-Level QoS

    Hongye FU  Naoki WAKAMIYA  Masayuki MURATA  

     
    PAPER

      Vol:
    E89-B No:9
      Page(s):
    2327-2335

    Overlay networks, such as P2P, Grid, and CDN, have been widely deployed over physical IP networks. Since simultaneous overlay networks compete for network resources, their selfish behaviors to improve their application-oriented QoS disrupt each other. To enhance the collective performance and improve the QoS at the application level, we consider so-called the overlay network symbiosis where overlay networks cooperate with each other. In this paper, we proposed a cooperative mechanism for hybrid P2P file-sharing networks, where peers can find more files and exchange files with more peers. Through simulation experiments, we verified the effectiveness of cooperation from view points of application and system.

1661-1680hit(2923hit)