The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ROS(1068hit)

801-820hit(1068hit)

  • Proposal of a Digital Double Relaxation Oscillation SQUID

    Hiroaki MYOREN  Mitsunori NAKAMURA  Takeshi IIZUKA  Susumu TAKADA  

     
    PAPER-SQUIDs

      Vol:
    E84-C No:1
      Page(s):
    49-54

    We present a digital double relaxation oscillation SQUID (DROS) with a digital flux-locked-loop (FLL) circuit consisting of an up/down counter and a digital-to-analog (D/A) converter. The up/down counter was designed using 4 jucntion logic (4JL) gates operated with a 2-phase power system. The D/A converter was designed using an R-2R ladder-type D/A converter. We simulated the dynamic behavior of the digital DROS with a digital FLL circuit combined with the 5-bit ripple up/down counter and the D/A converter. Simulation results show correct flux-locked behavior and a high slew rate of 107Φ0/s for the digital DROS.

  • Diffraction Pattern by an Empty Rectangular Cylinder in a Dielectric

    Taek-Kyung LEE  Se-Yun KIM  Jung-Woong RA  

     
    LETTER-Wireless Communication Technology

      Vol:
    E84-B No:1
      Page(s):
    124-127

    The capability of frequency-swept cross-borehole radar to detect an empty rectangular cylinder embedded in a dielectric medium is simulated numerically by employing the boundary element method. The frequency loci providing the strongest double dips in the received signal pattern are plotted as functions of the observation distance and the cross-sectional width. It is found that, regardless of the shape of the rectangular cross-section, the strongest double dips become double nulls in the near-field region.

  • Penalty-Free Operation of a DFB-LD in a State of Coherence Collapse and Its Application to Interferometric Noise Reduction

    Kyo INOUE  

     
    LETTER-Optical Fiber

      Vol:
    E83-B No:12
      Page(s):
    2702-2704

    When a single-mode LD is subjected to distant reflection, relative intensity noise and the width of the optical spectrum are drastically increased. This phenomenon is known as 'coherence collapse. ' This letter demonstrates that penalty-free operation is possible at 2.5 Gbit/s even when a DFB-LD is in a state of coherence collapse. In addition, an LD in a state of coherence collapse is applied to a situation where signal light suffers from interferometric crosstalk. The results show that the LD reduces the influence of interferometric noise because of its wide spectral width.

  • Numerical Analysis of Bistatic Cross-Sections of Conducting Circular Cylinders Embedded in Continuous Random Media

    Zhi Qi MENG  Natsuki YAMASAKI  Mitsuo TATEIBA  

     
    PAPER-Scattering and Propagation in Random Media

      Vol:
    E83-C No:12
      Page(s):
    1814-1819

    To make clear numerically the scattering characteristics for a body embedded in a random medium, we need to analyze the bistatic cross-section (BCS). The scattering problem can be analyzed as a boundary value problem by using current generator method. The fourth moment of Green's functions in the random medium, which is necessary for the analysis, is obtained approximately by two-scale method. We analyze numerically the BCS of conducting circular cylinders in continuous random media, which are assumed to fluctuate about the dielectric constant of free space. The numerical results agree well with the law of energy conservation. The effects of random media on the BCS are also clarified numerically.

  • Key Building Blocks for All-Optical Networks

    Alan E. WILLNER  Mustafa C. CARDAKLI  Olaf H. ADAMCZYK  Yong-Won SONG  Deniz GURKAN  

     
    SURVEY PAPER

      Vol:
    E83-B No:10
      Page(s):
    2166-2177

    The need for greater transmission capacity through optical fiber has been met so far by the wide scale deployment of wavelength division multiplexing (WDM). Still, to manage and access this bandwidth, the next growth challenge will most likely emerge at the switching nodes, where processing is needed to groom the ever diverse and changing traffic. The eventual goal is to reduce the amount of complex electronics, and thus, the cost, by migrating to the all-optical network, where data is switched and routed transparently in optical form, with a minimum amount of electronic processing. As a first step in this direction, optical cross-connects (OXCs) and optical add-drop multiplexers (OADMs) are already being introduced commercially to perform basic routing and switching functions for protection and allocation. Eventually, we envision an optical packet switched network layer that features: (i) bit rate transparency, (ii) protocol transparency, and (iii) fast switching with fine granularity. With these characteristics, an optical packet switched network layer can be a high performance and cost competitive solution for future networks. Several networking functions will be needed to deploy the all-optical transparent layer. Wavelength conversion will allow the reuse of wavelengths in the network and may help alleviate contentions. Optical synchronization and optical packet header processing (for routing and switching) will increase throughput and reduce latency. Last, but not least, all the above solutions will need to be bit rate and modulation format independent (or at least be able to handle a wide range of bit rates and modulation formats).

  • A Realistically Architecture of WDM Ring Network Using OXC and OADM

    Masayuki KASHIMA  Naoki MINATO  Satoko KUTSUZAWA  Saeko OSHIBA  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2253-2260

    A configuration capable of wavelength routing is indispensable in constructing an optical network that has the IP-over-WDM capability. A ring network based on WDM is one of the configurations that can make wavelength routing possible. As the nodes used to construct a WDM ring network, we have the optical ADM system (OADM) and optical cross connect system (OXC). In this paper, in order to make ring network realistic, we examined a wavelength routing way using the number of possible wavelengths and the number of Node-Connections. A wavelength routing way placement on a lattice letter logically, and the all paths forward by 1 hop or 2 hops. As the parameters for determining the number of nodes and the distance of transmission, we evaluated the deterioration resulting from coherent crosstalk and OSNR. As a result of evaluation, the number of node-passes for 1 hop transmission amounts to less than 20. In addition, when we made a test bed and made evaluations, the results almost coincided with theoretical values.

  • Optimal Grid Pattern for Automated Camera Calibration Using Cross Ratio

    Chikara MATSUNAGA  Yasushi KANAZAWA  Kenichi KANATANI  

     
    PAPER-Image Processing

      Vol:
    E83-A No:10
      Page(s):
    1921-1928

    With a view to virtual studio applications, we design an optimal grid pattern such that the observed image of a small portion of it can be matched to its corresponding position in the pattern easily. The grid shape is so determined that the cross ratio of adjacent intervals is different everywhere. The cross ratios are generated by an optimal Markov process that maximizes the accuracy of matching. We test our camera calibration system using the resulting grid pattern in a realistic setting and show that the performance is greatly improved by applying techniques derived from the designed properties of the pattern.

  • IP Traffic Condition Based Dynamic Optical Path Allocation Network System

    Yoshihiro NAKAHIRA  Saeko OSHIBA  

     
    LETTER

      Vol:
    E83-B No:10
      Page(s):
    2364-2367

    This paper describes experimental results of the IP traffic condition based dynamic optical path allocation network system. In the system, optical paths are dynamically allocated between congested node pairs to cope with traffic fluctuations. It seems that this experiment is the first of its kind in the world.

  • Autonomously Controlled Multiprotocol Wavelength Switching Network for Internet Backbones

    Yoshiaki YAMABAYASHI  Masafumi KOGA  Satoru OKAMOTO  

     
    INVITED PAPER

      Vol:
    E83-B No:10
      Page(s):
    2210-2215

    In order that they fully support human activities, new network services and applications are overwhelming conventional ones, such as telephony, facsimile, and telegraph. Demands for digital networks are exploding, not only in terms of quantity but also quality. Nobody can predict where these demands will lead. Traffic engineering, which is impossible in pure Internet protocol (IP) -based networks, is recognized as being indispensable for quality of service (QoS) control. It includes guaranteed services in terms of bandwidth, delay, delay variation (jitter), and service protection. The "engineered tunnel" through IP network supports virtual private networks (VPNs) and allows us to develop voice-over-IP (VoIP), teleconferencing and other secure private network services. This paper proposes the "photonic router" which makes use of wavelength-based networks for signal routing. IP packets having the same destination are bundled into a wavelength path. Interchange nodes along the path route control path routing on the basis of wavelength information, not on IP headers, which can not be read or processed with current optical techniques. In short, wavelength path routing offers "cut-through" in the photonic layer. This paper shows its feasibility by describing the combination of an optical cross-connect, payload assembler/disassembler, label controller, and IP router. Optical cross-connect systems, which are now being intensively studied worldwide, are deemed to be key equipment for a wavelength-path network with centralized control system. This paper proposes to apply the cross-connect to an IP network with distributed autonomous control.

  • Spectroscopic Determination of Temperature and Metal-Vapor for Copper Breaking Arc by Using a CCD Color Camera and an Additional Filter

    Mitsuru TAKEUCHI  Takayoshi KUBONO  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1377-1384

    In this paper, the distributions of two spectral intensities along the axis of an arc column of the breaking arc are measured by using a combination of a CCD color camera and an additional filter, and arc temperature and metal-vapor quantity are calculated, when copper electrodes interrupt circuits of dc 50 V/3.3 A and 5.0 A. As results; The spectral intensities of excited copper atoms are the strongest near the cathode and become weaker with distance from the cathode in the small number of breaking arcs. The spectral intensities become strong near the anode in the large number of breaking arcs. The average arc temperature in the cross-section of an arc column is high near both the cathode and the anode, and the temperature distribution in the cross-section of the arc column is high at the axis of the arc column, and the arc temperature along the axis of the arc column is high near both the cathode and the anode. The metal-vapor quantity is low near both the cathode and the anode, and it is much at the center of the arc column.

  • Circuit-Level Electrothermal Simulation of Electrostatic Discharge in Integrated Circuits

    Ken-ichiro SONODA  Motoaki TANIZAWA  Kiyoshi ISHIKAWA  Norihiko KOTANI  Tadashi NISHIMURA  

     
    PAPER-Circuit Applications

      Vol:
    E83-C No:8
      Page(s):
    1317-1323

    A circuit-level electrothermal simulator, MICS (MItsubishi Circuit Simulator), is presented with parasitic bipolar transistor action and lattice heating taken into account. Diffusion capacitance in parasitic bipolar transistors is introduced to cover turn-on behavior under short rise-time current. Device temperatures are simulated from calculated electrical characteristics and the closed-form solution of the heat transfer equation. Simulation results show that this tool is valuable in evaluating electrostatic discharge (ESD) robustness in integrated circuits (ICs).

  • A Multiple View 3D Registration Algorithm with Statistical Error Modeling

    John WILLIAMS  Mohammed BENNAMOUN  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:8
      Page(s):
    1662-1670

    The contribution of the paper is two-fold: Firstly, a review of the point set registration literature is given, and secondly, a novel covariance weighted least squares formulation of the multiple view point set registration problem is presented. Point data for surface registration is commonly obtained by non-contact, 3D surface sensors such as scanning laser range finders or structured light systems. Our formulation allows the specification of anisotropic and heteroscedastic (point dependent) 3D noise distributions for each measured point. In contrast, previous algorithms have generally assumed an isotropic sensor noise model, which cannot accurately describe the sensor noise characteristics. For cases where the point measurements are heteroscedastically and anisotropically distributed, registration results obtained with the proposed method show improved accuracy over those produced by an unweighted least squares formulation. Results are presented for both synthetic and real data sets to demonstrate the accuracy and effectiveness of the proposed technique.

  • Trade off between Page Number and Number of Edge-Crossings on the Spine of Book Embeddings of Graphs

    Miki Shimabara MIYAUCHI  

     
    LETTER-Graphs and Networks

      Vol:
    E83-A No:8
      Page(s):
    1732-1734

    This paper studies the problem of book-embeddings of graphs. When each edge is allowed to appear in one or more pages by crossing the spine of a book, it is well known that every graph G can be embedded in a 3-page book. Recently, it has been shown that there exists a 3-page book embedding of G in which each edge crosses the spine O(log2 n) times. This paper considers a book with more than three pages. In this case, it is known that a complete graph Kn with n vertices can be embedded in a n/2 -page book without any edge-crossings on the spine. Thus it becomes an interesting problem to devise book-embeddings of G so as to reduce both the number of pages used and the number of edge-crossings over the spine. This paper shows that there exists a d-page book embedding of G in which each edge crosses the spine O(logd n) times. As a direct corollary, for any real number s, there is an ns -page book embedding of G in which each edge crosses the spine a constant number of times. In another paper, Enomoto-Miyauchi-Ota show that for an integer d, if n is sufficiently large compared with d, then for any embedding of Kn into a d-page book, there must exist Ω(n2 logd n) points at which edges cross over the spine. This means our result is the best possible for Kn in this case.

  • Local Area Characterization of TTF-TCNQ Evaporated Films by Scanning Probe Microscope

    Kazuhiro KUDO  Masaaki IIZUKA  Shigekazu KUNIYOSHI  Kuniaki TANAKA  

     
    LETTER-Ultra Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1069-1070

    We have developed a new type electrical probing system based on an atomic force microscope. This method enables us to measure simultaneously the surface topography and surface potential of thin films containing the crystal grains. The obtained local potential changes give an insight into conduction through the grains and their boundaries.

  • Fabrication of Coplanar Microstructures Composed of Multiple Organosilane Self-Assembled Monolayers

    Hiroyuki SUGIMURA  Atsushi HOZUMI  Osamu TAKAI  

     
    PAPER-Ultra Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1099-1103

    Micropatterning of organosilane self-assembled monolayers (SAMs) was demonstrated on the basis of photolithography using an excimer lamp radiating vacuum ultra-violet (VUV) light of 172 nm in wavelength. This lithography is generally applicable to micropatterning of organic thin films including alkyl and fluoroalkyl SAMs, since its patterning mechanism involves cleavage of C-C bonds in organic molecules and subsequent decomposition of the molecules. In this study, SAMs were prepared on Si substrates covered with native oxide by chemical vapor deposition in which an alkylsilane, that is, octadecyltrimethoxysilane [CH3(CH2)17Si(OCH3)3, ODS] or a fluoroalkylsilane, that is, 1H, 1H, 2H, 2H-perfluorodecyltrimethoxy-silane [CF3(CF2)7CH2CH2Si(OCH3)3, FAS] were used as precursors. Each of these SAMs was photoirradiated through a photomask placed on its surface. As confirmed by atomic force microscopy and x-ray photoelectron spectroscopy, the SAMs were decomposed and removed in the photoirradiated area while the masked areas remained undecomposed. A micropattern of 2 µm in width was successfully fabricated. Furthermore, microstructures composed of two different SAMs, that is, ODS and FAS, were fabricated as follows. For example, an ODS-SAM was first micropatterned by the VUV-lithography. Since, the VUV-exposed region on the ODS-SAM showed an affinity to the chemisorption of organosilane molecules, the second SAM, i. e. , FAS, confined to the photolithographically defined pattern was successfully fabricated. Due to the electron negativity of F atoms, the FAS covered region showed a more negative surface potential than that of the ODS surface: its potential difference was ca. 120 mV as observed by Kelvin probe force microscopy.

  • Photosynthetic Activity Measurement of Plants Using Photoacoustic Spectroscopy Combined with Confocal Scanning Microscopy

    Hideo KOJIMA  Masahiro TAWATA  Teruhiro TAKABE  Hiroshi SHIMOYAMA  

     
    PAPER-Optics and Bio Electronics

      Vol:
    E83-C No:7
      Page(s):
    1142-1148

    Photoacoustic spectroscopy (PAS) has recently received much attention especially for plant photosynthesis research, because this technique is capable of performing non-destructive measurement without any pre-treatment of specimens. So far we have developed a PAS system equipped with an open photoacoustic cell (OPC), which allows in situ and in vivo measurements of plant photosynthesis of intact undetached leaves. In this study, we have measured photosynthesis reaction using OPC and developed a Confocal Scanning Photoacoustic Microscopy (CSPAM) system, in which PAS is combined with confocal scanning laser microscopy. The system allows simultaneous measurement of acoustic signal and another signal such as fluorescence, and also gives two- and three- dimensional intensity distributions of these signals, thereby giving two- and three- dimensional information about photosynthetic activity of plants.

  • Organic Monolayer Film Dielectrics for Electronics

    Mitsumasa IWAMOTO  

     
    INVITED PAPER-Ultra Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1062-1068

    The author's recent research topics of organic monolayer films have been reviewed. The importance of the study of organic monolayers is discussed from the viewpoints of future electronics and dielectric physics, keeping in mind the difference between monolayers and bulk materials.

  • The Propagation Characteristic of Laser Light on the Polystyrene Micro-Sphere Array at 10 µm Diameter

    Fujun HUANG  Shinzo MORITA  

     
    PAPER-Optics and Bio Electronics

      Vol:
    E83-C No:7
      Page(s):
    1149-1152

    The propagation characteristic of 670 nm laser light on the array of 10 µm diameter polystyrene micro-sphere was studied. For the linearly arranged array of micro-spheres from one to 12, the propagated light intensity was decreased from 700 mV to 45 mV. However, the propagated light intensity in the air was significantly decreased and it became 2 mV at 60 µm from the optical fiber light source. For the micro-sphere array on the curvilinear line, the light intensity at 12th micro-sphere became 35 mV. This fact means the light was propagated almost same as that on the linear line. Whereas it is expected that three dimensionally crossing optical wave-guide is possible to be fabricated by arranging the micro-spheres.

  • Crossbar Arbiter Architecture for High-Speed MAPOS Switch

    Tsuyoshi OGURA  Satoru YAGI  Tetsuo KAWANO  Mitsuru MARUYAMA  Naohisa TAKAHASHI  

     
    PAPER

      Vol:
    E83-D No:5
      Page(s):
    1028-1038

    This paper describes a crossbar-switch arbiter for a high-speed MAPOS switch. The arbiter uses the following techniques suitable for variable-length frame switching: 1. parallel processing for handling requests from network interfaces and for resource allocation, 2. techniques such as release-on-request, fast back-to-back transfer, and request prefetching to reduce the arbitration overhead, and 3. a resource sampling technique to enable efficient one-shot multicast processing. Our simulation-based performance evaluation and estimation of the scale of its logic circuits indicated that this arbiter can be implemented through simple hardware.

  • Analytical Investigation of Resonant Frequency of a Microstrip Antenna with Meshed Ground Plane

    Toru TAKAHASHI  Isamu CHIBA  

     
    LETTER

      Vol:
    E83-C No:5
      Page(s):
    755-758

    In this letter, we propose an approximate calculation formula for the resonant frequency of a microstrip antenna with meshed ground plane, which is derived by perturbational technique and is expressed by a simple closed form. The calculated results are in good agreement with FDTD-calculated and measured ones. Therefore, it is confirmed that the proposed formula is valid for approximate evaluation of the resonant frequency of microstrip antenna with meshed ground plane.

801-820hit(1068hit)