The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ROS(1068hit)

861-880hit(1068hit)

  • Optical Path Cross-Connect System Using Matrix Wavelength Division Multiplex Scheme

    Kazunari HARADA  Kenji SHIMIZU  Nobuhiro SUGANO  Teruhiko KUDOU  Takeshi OZEKI  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-B No:2
      Page(s):
    344-348

    Wavelength division multiplex (WDM) photonic networks are expected as the key for the global communication infrastructure. Recent increase of communication demands require large-scale highly-dense WDM systems, which results in severe requirements for optical cross-connect systems, such as cross-talk specification. In this paper, we propose a new optical path cross-connect system (OPXC) using matrix-WDM scheme, which makes it possible to reduce cross-talk requirements of WDM filters and to construct OPXC in modular structures. The matrix-WDM scheme is a concept of two-layered optical paths, which provides wavelength group managements in the fiber dispersion equalization and EDFA gain equalization.

  • Wavelength Converter Technology

    Kristian E. STUBKJAER  Allan KLOCH  Peter Bukhave HANSEN  Henrik N. POULSEN  David WOLFSON  Kim Stokholm JEPSEN  Anders Thomas CLAUSEN  Emmanuel LIMAL  Alvaro BUXENS  

     
    INVITED PAPER-Photonic WDM Devices

      Vol:
    E82-C No:2
      Page(s):
    338-348

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.

  • Wavelength Converter Technology

    Kristian E. STUBKJAER  Allan KLOCH  Peter Bukhave HANSEN  Henrik N. POULSEN  David WOLFSON  Kim Stokholm JEPSEN  Anders Thomas CLAUSEN  Emmanuel LIMAL  Alvaro BUXENS  

     
    INVITED PAPER-Photonic WDM Devices

      Vol:
    E82-B No:2
      Page(s):
    390-400

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.

  • All-Optical NRZ-to-Inverted-RZ Converter with Extinction Ratio Enhancement Using a Modified Terahertz Optical Asymmetric Demultiplexer

    Hyuek Jae LEE  Kwangjoon KIM  Jee Yon CHOI  Hae-Geun KIM  Chu Hwan YIM  

     
    LETTER-Photonic Switching Devices

      Vol:
    E82-C No:2
      Page(s):
    335-337

    To enhance the extinction ratio (ER) of NRZ-to-inverted-RZ converter based on cross-gain compression of a semiconductor optical amplifier (SOA), a modified terahertz optical asymmetric demultiplexer (TOAD) is cascaded. ER is improved from 1.6-6.7 dB to 5.4-14.5 dB, depending on the intensity of input optical NRZ signal. The proposed NRZ-to-inverted-RZ converter enhances and regulates ER to a high value (14.5 dB) for very wide optical NRZ signal intensity range.

  • All-Optical NRZ-to-Inverted-RZ Converter with Extinction Ratio Enhancement Using a Modified Terahertz Optical Asymmetric Demultiplexer

    Hyuek Jae LEE  Kwangjoon KIM  Jee Yon CHOI  Hae-Geun KIM  Chu Hwan YIM  

     
    LETTER-Photonic Switching Devices

      Vol:
    E82-B No:2
      Page(s):
    387-389

    To enhance the extinction ratio (ER) of NRZ-to-inverted-RZ converter based on cross-gain compression of a semiconductor optical amplifier (SOA), a modified terahertz optical asymmetric demultiplexer (TOAD) is cascaded. ER is improved from 1.6-6.7 dB to 5.4-14.5 dB, depending on the intensity of input optical NRZ signal. The proposed NRZ-to-inverted-RZ converter enhances and regulates ER to a high value (14.5 dB) for very wide optical NRZ signal intensity range.

  • Assembly and Electrical Wiring Technologies on Planar Lightwave Circuit (PLC) Platform Providing Hybrid Integration of Optoelectronic Devices and Integrated Circuits (ICs)

    Takaharu OHYAMA  Yuji AKAHORI  Masahiro YANAGISAWA  Hideki TSUNETSUGU  Shinji MINO  

     
    PAPER-Assembly and Packaging Technologies

      Vol:
    E82-C No:2
      Page(s):
    370-378

    Optoelectronic hybrid integration is a promising technology for realizing the optical components needed in optical transmission, switching, and interconnection systems that use wavelength division multiplexing (WDM) and time division multiplexing (TDM). We have already developed versatile optical hybrid integrated modules using a silica-based planar lightwave circuit (PLC) platform. However, these modules consist solely of the optoelectronic semiconductor devices such as laser diodes (LDs) and photo diodes (PDs) and monolithic optoelectronic integrated circuits (OEICs). To carry out high-speed and versatile electric signal processing functions in future network systems, it is necessary to install semiconductor electrical integrated circuits (ICs) on a PLC platform. In this paper, we describe novel technologies for high-speed PLC platforms which make it possible to assemble both ICs and optoelectronic devices. Using these technologies, we fabricated a two-channel hybrid integrated optical transmitter module which is hybrid integrated with an LD array chip and an LD driver IC. On this PLC platform, we use microstrip lines (MSLs) to drive the LD driver IC. We also considered the effect of heat interference on the LD array chip caused by the LD driver IC when designing the layout of the chip assembly region. The LD array chip and the LD driver IC were flip-chip bonded with solder bumps of a different material to avoid any deterioration in the coupling efficiency of the LD array chip. The optical transmitter module we fabricated operated successfully at 9 Gbit/s non-return-zero (NRZ) signal. This approach using a PLC platform for the hybrid integration of an LD array chip and an LD driver IC will carry forward the development of high-speed optoelectronic modules with both optical and electrical signal processing functions.

  • Development on Guided-Wave Switch Arrays

    Hirochika NAKAJIMA  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-C No:2
      Page(s):
    297-304

    State of the arts on guided-wave optical switch arrays are reviewed. In this paper, electro-optic Ti:LiNbO3 devices are mainly described in comparison with crosspoint switch element structures and switch array architectures. Packaging technologies and stability problems are discussed for practical system applications. Recent development on other materials such as semiconductor waveguides, thermo-optic glass/polymer waveguides are also reviewed briefly.

  • Development on Guided-Wave Switch Arrays

    Hirochika NAKAJIMA  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-B No:2
      Page(s):
    349-356

    State of the arts on guided-wave optical switch arrays are reviewed. In this paper, electro-optic Ti:LiNbO3 devices are mainly described in comparison with crosspoint switch element structures and switch array architectures. Packaging technologies and stability problems are discussed for practical system applications. Recent development on other materials such as semiconductor waveguides, thermo-optic glass/polymer waveguides are also reviewed briefly.

  • Assembly and Electrical Wiring Technologies on Planar Lightwave Circuit (PLC) Platform Providing Hybrid Integration of Optoelectronic Devices and Integrated Circuits (ICs)

    Takaharu OHYAMA  Yuji AKAHORI  Masahiro YANAGISAWA  Hideki TSUNETSUGU  Shinji MINO  

     
    PAPER-Assembly and Packaging Technologies

      Vol:
    E82-B No:2
      Page(s):
    422-430

    Optoelectronic hybrid integration is a promising technology for realizing the optical components needed in optical transmission, switching, and interconnection systems that use wavelength division multiplexing (WDM) and time division multiplexing (TDM). We have already developed versatile optical hybrid integrated modules using a silica-based planar lightwave circuit (PLC) platform. However, these modules consist solely of the optoelectronic semiconductor devices such as laser diodes (LDs) and photo diodes (PDs) and monolithic optoelectronic integrated circuits (OEICs). To carry out high-speed and versatile electric signal processing functions in future network systems, it is necessary to install semiconductor electrical integrated circuits (ICs) on a PLC platform. In this paper, we describe novel technologies for high-speed PLC platforms which make it possible to assemble both ICs and optoelectronic devices. Using these technologies, we fabricated a two-channel hybrid integrated optical transmitter module which is hybrid integrated with an LD array chip and an LD driver IC. On this PLC platform, we use microstrip lines (MSLs) to drive the LD driver IC. We also considered the effect of heat interference on the LD array chip caused by the LD driver IC when designing the layout of the chip assembly region. The LD array chip and the LD driver IC were flip-chip bonded with solder bumps of a different material to avoid any deterioration in the coupling efficiency of the LD array chip. The optical transmitter module we fabricated operated successfully at 9 Gbit/s non-return-zero (NRZ) signal. This approach using a PLC platform for the hybrid integration of an LD array chip and an LD driver IC will carry forward the development of high-speed optoelectronic modules with both optical and electrical signal processing functions.

  • Optical Path Cross-Connect System Using Matrix Wavelength Division Multiplex Scheme

    Kazunari HARADA  Kenji SHIMIZU  Nobuhiro SUGANO  Teruhiko KUDOU  Takeshi OZEKI  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-C No:2
      Page(s):
    292-296

    Wavelength division multiplex (WDM) photonic networks are expected as the key for the global communication infrastructure. Recent increase of communication demands require large-scale highly-dense WDM systems, which results in severe requirements for optical cross-connect systems, such as cross-talk specification. In this paper, we propose a new optical path cross-connect system (OPXC) using matrix-WDM scheme, which makes it possible to reduce cross-talk requirements of WDM filters and to construct OPXC in modular structures. The matrix-WDM scheme is a concept of two-layered optical paths, which provides wavelength group managements in the fiber dispersion equalization and EDFA gain equalization.

  • Influence of the Shape of Silver Contacts on the Spatial Distribution of Spectral Intensity of a Breaking Arc

    Mitsuru TAKEUCHI  Takayoshi KUBONO  

     
    PAPER

      Vol:
    E82-C No:1
      Page(s):
    41-48

    In a DC 50 V/3.3 A circuit, the spatial distributions of the spectral intensities of breaking arcs near the cathode for silver contacts were measured on the contact surfaces of three different shapes: flat and spherical (1 mm radius and 2 mm radius) and the arc temperature and the metal-vapor quantity were calculated from the spectral intensities. The influence of the contact shape on the arc temperature and the metal-vapor quantity were also examined, as well as the arc tracks on the contact surfaces and the gain and loss of the contacts. Findings show the distributions of spectral intensities are non-symmetrical from the beginning to the extinction of the breaking arc for the flat contact: However, they are symmetrical in the latter half of the breaking in spite of the number of breaking arcs and the shape of contact surface for the spherical contact. The relationship between the area of the arc tracks on the cathode and the shape of contact surface is the same as the relationship between the existent areas of measured spectra and the shape of the contact surface. For the spherical contacts, the arc temperature and the metal-vapor quantity are affected a little by the radius of the curved of contact surface and the number of breaking arcs. However, the longer the arc duration, the higher the metal-vapor quantity is in the latter period of the breaking arc. For the flat contacts, the metal-vapor quantity is lower than those for the spherical contacts. The gain and loss of the contacts are less and the arc duration is shorter for the flat contact than for the spherical contact.

  • Increase in Contact Resistance of Hard Gold Plating during Thermal Aging -- Nickel-Hardened Gold and Cobalt-Hardened Gold --

    Hisao KUMAKURA  Makoto SEKIGUCHI  

     
    PAPER

      Vol:
    E82-C No:1
      Page(s):
    13-18

    Contact resistance of nickel hardened gold electroplate (NiHG) deposited on nickel-underplated phosphor bronze disk coupons (substrate) after thermal aging was measured with a hard gold-plated beryllium copper alloy pin probe by means of a four-point probe technique, compared to that of cobalt-hardened gold electroplate (CoHG). Surface of NiHG plated coupons after aging was analyzed by X-ray photoelectron spectroscopy (XPS) to investigate the influence of the oxide film formation during thermal aging on contact resistance of NiHG electroplate, compared to that of CoHG. Initial contact resistance of the NiHG coupons was less than 10 mΩ at a contact forces more than 0.05 N, increased to 10 mΩ at a contact force of 0.05 N after 100 hours aging at 200. In contrast, contact resistance of the CoHG coupons progressively increased with increase in aging time, reached 1000 mΩ even at a contact force of 0.05 N after 52 hours aging. XPS analysis for the NiHG coupons demonstrated that nickel oxide film was formed on the NiHG surface in conformity with parabolic growth kinetics, as cobalt oxide film formed on CoHG surface. However, a thickness of the latter film was approximately 4-fold larger than that of former after 100 hours aging at 200. The small increase in contact resistance of NiHG coupons after aging suggested to be due to inhibitory of nickel oxide film growth on the surface. The cause of relatively low and steady contact resistance of NiHG during thermal aging was discussed.

  • A Novel Resonant Coupling Type Microstrip Line Interconnect

    Masashi HOTTA  Yongxi QIAN  Tatsuo ITOH  

     
    LETTER-Microwave and Millimeter Wave Technology

      Vol:
    E82-C No:1
      Page(s):
    147-150

    Resonant coupling type microstrip line interconnects using a bonding ribbon and dielectric pad have been designed and fabricated. The basic concept of this interconnect is the LC serial resonance of the pad capacitor and ribbon inductor. Both numerical simulation and experiment reveal low return loss and high efficiency connection at the predicted resonant frequency region, which can be readily shifted to higher frequencies by tuning the structural parameters. Improvement in bandwidth of the interconnect is demonstrated by using a pad with higher dielectric constant. Furthermore, it is also shown that a slight modification allows DC connection in addition to efficient coupling at the resonant frequency.

  • Improving the Sensitivity of H-Type LiTaO3 Piezoelectric Crystal Gyroscopes

    Noboru WAKATSUKI  Hiroshi TANAKA  

     
    PAPER

      Vol:
    E82-C No:1
      Page(s):
    60-65

    We propose and experimentally confirm two approaches to improve the sensitivity of the H-type piezoelectric crystal gyroscope of LiTaO3. One is to adjust the resonant frequencies of the fz mode through additional mass control; the other is to change the driving mode from fx mode to fz mode, while the driving frequency is the resonant frequency of the fx mode. The sensitivity of the unit driving voltage is almost the same, but the threshold driving voltage level may increase more than 1,000 times, because it is far from the mechanical resonance. The high sensitivity of 0.11 pC (deg/sec) was obtained at a driving voltage of 30 Vpp.

  • Contact Fretting of Electronic Connectors

    Morton ANTLER  

     
    INVITED PAPER

      Vol:
    E82-C No:1
      Page(s):
    3-12

    Connector contact resistance may become unstable if fretting occurs. Such motions result in the formation of insulating oxides on the surface of base metal contacts or organic polymers on contacts made of platinum group metals. These degradations are termed fretting corrosion and frictional polymerization, respectively. Motion may be caused by external vibration or fluctuating temperature. The lower the frequency of movement, the fewer the number of cycles to contact failure. Increasing the contact normal load or reducing the amplitude of movement may stabilize the connection. Tin and palladium and many of their alloys are especially prone to fretting failure. Tin mated to gold is worse than all-tin contacts. Gold and high gold-silver alloys that are softer when mated to palladium stabilize contact resistance since these metals transfer to the palladium during fretting; but flash gold coatings on palladium and palladium nickel offer marginal improvement for the gold often quickly wears out. Dissimilar metal contact pairs show behaviors like that of the metal which predominates on the surface by transfer. Contact lubricants can often prevent fretting failures and may even restore unlubricated failed contacts to satisfactory service.

  • A Study on Millimeter-Wave Radar Cross Section Characteristics for Road Condition Sensing

    Hiroyuki YAMAGUCHI  Akihiro KAJIWARA  Shogo HAYASHI  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E81-B No:12
      Page(s):
    2559-2566

    In this paper, millimeter-wave radar cross section (RCS) characteristics for rough surface is investigated by means of an approximation method of the magnetic field integral equation and the feasibility of road condition sensing is discussed. The RCS measurement at 94 GHz is carried out in order to verify the numerical result, thereby the numerical results are in good agreement with the measured RCS. The dependence of RCS on the radar incidence angle and surface roughness is investigated where the cross-polarized RCS characteristic is also considered.

  • Ultrasonic Closing Click of the Prosthetic Cardiac Valve

    Jun HASEGAWA  Kenji KOBAYASHI  Hiroshi MATSUMOTO  

     
    LETTER-Bio-Cybernetics and Neurocomputing

      Vol:
    E81-D No:12
      Page(s):
    1517-1521

    Mechanical prosthetic cardiac valves generate not only the widely recognized audible closing clicks but also ultrasonic closing clicks, as previously reported by us. A personal-computer-based measurement and analysis system with the bandwidth of 625 kHz has been developed to clarify the characteristics of these ultrasonic closing clicks. Fifty cases in total were assessed clinically, including cases with tilting disk valves, bileaflet valves, and flat disk valves. The ultrasonic closing clicks are damped vibrations continuing for about two milliseconds, and their frequency range was confirmed to be from 8 kHz to 625 kHz, while that of the audible click was up to 8 kHz. Although the sensitivity of the sensor decreased by approximately 30 dB at 625 kHz, effective power of the ultrasonic closing click was confirmed at this frequency. Moreover, it was shown that, surprisingly, the signal power at 625 kHz was still at the same level as that at around 100 kHz. Those wide bandwidth signal components exist independent of the type of mechanical valve, but the spectral pattern shows some dependence on the valve type.

  • Characterization of Microstrip Lines with Various Cross-Sections of Strip Conductors in Microwave Integrated Circuits

    Keren LI  

     
    PAPER

      Vol:
    E81-C No:12
      Page(s):
    1845-1851

    In this paper, we present an analysis of the microstrip lines whose strip conductors are of various cross-sections, such as rectangular cross-section, triangle cross-section, and half-cycle cross-section. The method employed is the boundary integral equation method (BIEM). Numerical results for these microstrip lines demonstrate various shape effects of the strip conductor on the characteristics of lines. The processing technique on the convergence of the Green's function is also described.

  • Radar Cross Section of an Open-Ended Rectangular Cylinder with an Iris Inside the Cavity

    Shinichiro OHNUKI  Takashi HINATA  

     
    PAPER

      Vol:
    E81-C No:12
      Page(s):
    1875-1880

    This paper shows an analysis of electromagnetic scattering from an open-ended rectangular cylinder for a plane wave incidence. The internal region is separated into two areas by additional plates to investigate the cavity resonance in detail. The applied numerical technique is the point matching method taking account of the edge condition. As numerical examples, the radar cross section is presented for E - polarized case and H - polarized case. Physical meanings of the computational results are discussed with a view to the contribution of the iris.

  • Analysis of Structure Dependence of Very Short Channel Field Effect Transistor Using Vertical Tunneling with Heterostructures on Silicon

    Wataru SAITOH  Katsuyuki YAMAZAKI  Masafumi TSUTSUI  Masahiro ASADA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E81-C No:12
      Page(s):
    1918-1925

    We have analyzed a very short channel tunneling field effect transistor which uses new heterostructures (CoSi2/Si/CdF2/CaF2) lattice-matched to the Si substrate. In device operation, the drain current from source (CoSi2) to drain (CoSi2) through tunnel barriers (Si) and the channel (CdF2) is controlled by a gate electric field applied to the barrier between the source and the channel through the gate insulator (CaF2). Theoretical analysis shows that this transistor has characteristics similar to those of conventional metal-oxide-semiconductor field effect transistors even with channel lengths as short as 5 nm. In addition, we have estimated the theoretical response time of this transistor and showed the possibility of subpicosecond response.

861-880hit(1068hit)