The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

2341-2360hit(4570hit)

  • Scattered-Field Time Domain Boundary Element Method and Its Application to Transient Electromagnetic Field Simulation in Particle Accelerator Physics

    Kazuhiro FUJITA  Hideki KAWAGUCHI  Shusuke NISHIYAMA  Satoshi TOMIOKA  Takeaki ENOTO  Igor ZAGORODNOV  Thomas WEILAND  

     
    PAPER-Numerical Techniques, Computational Electromagnetic

      Vol:
    E90-C No:2
      Page(s):
    265-274

    Authors have been working in particle accelerator wake field analysis by using the Time Domain Boundary Element Method (TDBEM). A stable TDBEM scheme was presented and good agreements with conventional wake field analysis of the FDTD method were obtained. On the other hand, the TDBEM scheme still contains difficulty of initial value setting on interior region problems for infinitely long accelerator beam pipe. To avoid this initial value setting, we adopted a numerical model of beam pipes with finite length and wall thickness on open scattering problems. But the use of such finite beam pipe models causes another problem of unwanted scattering fields at the beam pipe edge, and leads to the involvement of interior resonant solutions. This paper presents a modified TDBEM scheme, Scattered-field Time Domain Boundary Element Method (S-TDBEM) to treat the infinitely long beam pipe on interior region problems. It is shown that the S-TDBEM is able to avoid the excitation of the edge scattering fields and the involvement of numerical instabilities caused by interior resonance, which occur in the conventional TDBEM.

  • Scattering of Electromagnetic Waves by Multilayered Inhomogeneous Columnar Dielectric Gratings Loaded Rectangular Dielectric Constant

    Ryosuke OZAKI  Tsuneki YAMASAKI  Takashi HINATA  

     
    PAPER-Periodic Structures

      Vol:
    E90-C No:2
      Page(s):
    295-303

    In this paper, we propose a new technique for the scattering problems of multilayered inhomogeneous columnar dielectric gratings loaded rectangular dielectric constant both TM and TE waves using the combination of improved Fourier series expansion method, the multilayer method, and the eigenvalue matrix method. Numerical results are given for the power transmission coefficients in the parameters ε 3 /ε 0 , c/p, and b/d of rectangular cylinders to obtain the basic characteristic of the power transmission coefficients and reflection coefficients switching or frequency selective devices for both TM and TE waves. The influence of the incident angle and frequency of the transmitted power are also discussed in the connection with the propagation constant β in the free mode.

  • Scaling Law of Turbo Codes over the Binary Erasure Channel

    Jeong Woo LEE  Sungwook YU  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E90-B No:2
      Page(s):
    338-341

    In this paper, it is shown that the bit erasure probability of turbo codes with iterative decoding in the waterfall region is nonlinearly scaled by the information blocklength. This result can be used to predict efficiently the bit erasure probability of the finite-length turbo codes over the binary erasure channel.

  • A Numerical Solution for Electromagnetic Scattering from Large Faceted Conducting Bodies by Using Physical Optics-SVD Derived Bases

    Gianluigi TIBERI  Agostino MONORCHIO  Giuliano MANARA  Raj MITTRA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E90-C No:2
      Page(s):
    252-257

    A novel procedure for an efficient and rigorous solution of electromagnetic scattering problems is presented. It is based on the use of universal bases that are obtained by applying the SVD procedure to PO-derived basis functions. These bases, constructed by totally bypassing any matrix-type approach, can be used for all angles of incidence and their use leads to a matrix with relatively small dimensions. The method enables us to solve 2D scattering problems in a computationally efficient and numerically rigorous manner.

  • Low Complexity Scheduling Algorithms for Downlink Multiuser MIMO System

    Jinfan ZHANG  Yunzhou LI  Shidong ZHOU  Jing WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:2
      Page(s):
    358-363

    Downlink multiuser MIMO system has attracted considerable attention recently for its potential to increase the system capacity. However, due to the limitation on the number of transmit antennas, when there are more users than can be supported simultaneously in a cell, other multiple access schemes, such as TDMA, must be applied in combination with multiuser MIMO. In this paper, we aim to design practical user scheduling algorithms to maximize the system capacity. Because the brute-force search for optimal user allocation is computationally prohibitive, we propose three low complexity suboptimal scheduling algorithms that offer both low complexity and high performance.

  • Scattering of a TM Wave from a Periodic Surface with Finite Extent: Undersampling Approximation

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    PAPER-Periodic Structures

      Vol:
    E90-C No:2
      Page(s):
    304-311

    This paper deals with the scattering of a TM plane wave from a perfectly conductive sinusoidal surface with finite extent. For comparison, however, we briefly discuss the diffraction by the sinusoidal surface with infinite extent, where we use the concept of the total diffraction cross section per unit surface introduced previously. To solve a case where the sinusoidal corrugation width is much wider than wave length, we propose an undersampling approximation as a new numerical technique. For a small rough case, the total scattering cross section is calculated against the angle of incidence for several different corrugation widths. Then we find remarkable results, which are roughly summarized as follows. When the angle of incidence is apparently different from critical angles and diffraction beams are all scattered into non-grazing directions, the total scattering cross section increases proportional to the corrugation width and hence the total scattering cross section per unit surface (the ratio of the total scattering cross section to the corrugation width) becomes almost constant, which is nearly equal to the total diffraction cross section per unit surface in case of the sinusoidal surface with infinite extent. When the angle of incidence is critical and one of the diffraction beams is scattered into a grazing direction, the total scattering cross section per unit surface strongly depends on the corrugation width and approximately approaches to the total diffraction cross section per unit surface as the corrugation width gets wide.

  • Compact Two-Stage Class-AB CMOS OTA for Low-Voltage Filtering Applications

    Phanumas KHUMSAT  Apisak WORAPISHET  

     
    LETTER-Electronic Circuits

      Vol:
    E90-C No:2
      Page(s):
    543-546

    A compact OTA suitable for low-voltage active-RC and MOSFET-C filters is presented. The input stage of the OTA utilises the resistive tail-biased differential amplifier and the output stage relies upon the feed-forward class AB technique with common-mode rejection capability that incurs no penalty on transconductance/bias-current efficiency. Analysis on the achievable peak voltage swing of the OTA when employed in filters is given. Simulation results of a 0.5-V 100-kHz elliptic 5th-order filter based on the OTA's in a 2-V 0.18 µm CMOS process indicate the differential peak voltage as large as 0.42 Vp (84% of the supply voltage) at 1% THD with the SFDR of 60 dB and the total power consumption of 50 µW.

  • Non-resonant Electromagnetic Scattering Properties of Menger's Sponge Composed of Isotropic Paraelectric Material

    Ushio SANGAWA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E90-C No:2
      Page(s):
    484-491

    Menger's sponge (MS) is a kind of three-dimensional fractal structure. To analyze non-resonant electromagnetic properties of MS composed of isotropic paraelectric material, a novel, high-speed computation method employing simple recursion equations in terms of scattering amplitudes for two MS's with adjacent stage numbers, which are the parameters describing structural differences of MS's, is formulated. Within the scope of non-resonant electromagnetic phenomena, scattering patterns, forward and backward scattering amplitudes, and total cross sections of MS are investigated as a function of stage number and incident plane waves, and behaviors typical to fractal structures are extracted from the numerical results of the above equations. In addition, scattering properties at infinite stage number are discussed.

  • Characteristics of 60 GHz Analog RF-Optic Transceiver Module

    Jeha KIM  Yong-Duck CHUNG  Kwang-Seong CHOI  Young-Shik KANG  Kyoung-Ik CHO  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    359-364

    Using an electro-absorption duplexer (EAD) we presented a transceiver (TRx) module for dual function of both electrical-to-optical (E/O) and optical-to-electrical (E/O) conversion at 60 GHz band. The EAD chip was fabricated by monolithically integrating both a waveguide photodiode (PD) and an electro-absorption modulator (EAM) in association with traveling wave electrodes. We also investigated the issues of RF packaging in which the optoelectronic and electronic amplifier devices were co-packaged in a single housing. The RF impedance matching was accomplished in assistance with a microstrip bandpass filter.

  • Performance Evaluation of Next Generation Free-Space Optical Communication System

    Kamugisha KAZAURA  Kazunori OMAE  Toshiji SUZUKI  Mitsuji MATSUMOTO  Edward MUTAFUNGWA  Tadaaki MURAKAMI  Koichi TAKAHASHI  Hideki MATSUMOTO  Kazuhiko WAKAMORI  Yoshinori ARIMOTO  

     
    PAPER

      Vol:
    E90-C No:2
      Page(s):
    381-388

    Free-space optical communication systems can provide high-speed, improved capacity, cost effective and easy to deploy wireless networks. Experimental investigation on the next generation free-space optical (FSO) communication system utilizing seamless connection of free-space and optical fiber links is presented. A compact antenna which utilizes a miniature fine positioning mirror (FPM) for high-speed beam control and steering is described. The effect of atmospheric turbulence on the beam angle-of-arrival (AOA) fluctuations is shown. The FPM is able to mitigate the power fluctuations at the fiber coupling port caused by this beam angle-of-arrival fluctuations. Experimental results of the FSO system capable of offering stable performance in terms of measured bit-error-rate (BER) showing error free transmission at 2.5 Gbps over extended period of time and improved fiber received power are presented. Also presented are performance results showing stable operation when increasing the FSO communication system data rate from 2.5 Gbps to 10 Gbps as well as WDM experiments.

  • New Construction for Balanced Boolean Functions with Very High Nonlinearity

    Khoongming KHOO  Guang GONG  

     
    PAPER-Symmetric Cryptography

      Vol:
    E90-A No:1
      Page(s):
    29-35

    In the past twenty years, there were only a few constructions for Boolean functions with nonlinearity exceeding the quadratic bound 2n-1-2(n-1)/2 when n is odd (we shall call them Boolean functions with very high nonlinearity). The first basic construction was by Patterson and Wiedemann in 1983, which produced unbalanced function with very high nonlinearity. But for cryptographic applications, we need balanced Boolean functions. Therefore in 1993, Seberry, Zhang and Zheng proposed a secondary construction for balanced functions with very high nonlinearity by taking the direct sum of a modified bent function with the Patterson-Wiedemann function. Later in 2000, Sarkar and Maitra constructed such functions by taking the direct sum of a bent function with a modified Patterson-Wiedemann function. In this paper, we propose a new secondary construction for balanced Boolean functions with very high nonlinearity by recursively composing balanced functions with very high nonlinearity with quadratic functions. This is the first construction for balanced function with very high nonlinearity not based on the direct sum approach. Our construction also have other desirable properties like high algebraic degree and large linear span.

  • Rearrangeability of Tandem Cascade of Banyan-Type Networks

    Xuesong TAN  Shuo-Yen Robert LI  

     
    PAPER-Rearrangeable Network

      Vol:
    E90-D No:1
      Page(s):
    67-74

    The cascade of two baseline networks in tandem is a rearrangeable network. The cascade of two omega networks appended with a certain interconnection pattern is also rearrangeable. These belong to the general problem: for what banyan-type network (i.e., bit-permuting unique-routing network) is the tandem cascade a rearrangeable network? We relate the problem to the trace and guide of banyan-type networks. Let τ denote the trace permutation of a 2n2n banyan-type network and γ the guide permutation of it. This paper proves that rearrangeability of the tandem cascade of the network is solely determined by the transposition τγ-1. Such a permutation is said to be tandem rearrangeable when the tandem cascade is indeed rearrangeable. We identify a few tandem rearrangeable permutations, each implying the rearrangeability of the tandem cascade of a wide class of banyan-type networks.

  • Separability-Based Intelligent Scissors for Interactive Image Segmentation

    Noriaki SUETAKE  Eiji UCHINO  Kanae HIRATA  

     
    PAPER

      Vol:
    E90-D No:1
      Page(s):
    137-144

    Intelligent scissors is an interactive image segmentation algorithm which allows a user to select piece-wise globally optimal contour segment corresponding to a desired object boundary. However, the intelligent scissors is too sensitive to a noise and texture patterns in an image since it utilizes the gradient information concerning the pixel intensities. This paper describes a new intelligent scissors based on the concept of the separability in order to improve the object boundary extraction performance. The effectiveness of the proposed method has been confirmed by some experiments for actual images acquired by an ordinary digital camera.

  • Image Authentication Scheme for Resisting JPEG, JPEG2000 Compression and Scaling

    Chih-Hung LIN  Wen-Shyong HSIEH  

     
    PAPER

      Vol:
    E90-D No:1
      Page(s):
    126-136

    This paper presents a secure and simple content-based digital signature method for verifying the image authentication under JPEG, JPEG2000 compression and scaling based on a novel concept named lowest authenticable difference (LAD). The whole method, which is extended from the crypto-based digital signature scheme, mainly consists of statistical analysis and signature generation/verification. The invariant features, which are generated from the relationship among image blocks in the spatial domain, are coded and signed by the sender's private key to create a digital signature for each image, regardless of the image size. The main contributions of the proposed scheme are: (1) only the spatial domain is adopted during feature generation and verification, making domain transformation process unnecessary; (2) more non-malicious manipulated images (JPEG, JPEG2000 compressed and scaled images) than related studies can be authenticated by LAD, achieving a good trade-off of image authentication between fragile and robust under practical image processing; (3) non-malicious manipulation is clearly defined to meet closely the requirements of storing images or sending them over the Internet. The related analysis and discussion are presented. The experimental results indicate that the proposed method is feasible and effective.

  • A 900 MHz RF Transmitter with Output LO Suppression

    Viet-Hoang LE  Trung-Kien NGUYEN  Seok-Kyun HAN  Sang-Gug LEE  

     
    LETTER-Electronic Circuits

      Vol:
    E90-C No:1
      Page(s):
    201-203

    This letter presents a 900 MHz ZigBee RF transmitter front-end with on-chip LO suppression circuit at the output. To suppress the LO leakage at the RF output, a novel LO suppression circuit is adopted at the up-conversion mixer. The RF transmitter implemented in 0.18 µm CMOS shows more than 28 dB of LO suppression over a wide range of the baseband signal power variation.

  • A Distributed Source Coding Scheme for Source Estimation in Wireless Sensor Networks

    Zuoyin TANG  Ian A. GLOVER  Donald M. MONRO  Jianhua HE  

     
    LETTER-Network

      Vol:
    E90-B No:1
      Page(s):
    152-155

    This letter proposes a simple and efficient random-binning based distributed source coding (DSC) scheme for application to remote source estimation in wireless sensor networks. The scheme jointly encodes data from multiple sensors with side information. It achieves high coding efficiency and reduces power and bandwidth consumption.

  • Optimal Multiple Assignments Based on Integer Programming in Secret Sharing Schemes with General Access Structures

    Mitsugu IWAMOTO  Hirosuke YAMAMOTO  Hirohisa OGAWA  

     
    PAPER-Protocols

      Vol:
    E90-A No:1
      Page(s):
    101-112

    It is known that for any general access structure, a secret sharing scheme (SSS) can be constructed from an (m,m)-threshold scheme by using the so-called cumulative map or from a (t,m)-threshold SSS by a modified cumulative map. However, such constructed SSSs are not efficient generally. In this paper, a new method is proposed to construct a SSS from a (t,m)-threshold scheme for any given general access structure. In the proposed method, integer programming is used to derive the optimal (t,m)-threshold scheme and the optimal distribution of the shares to minimize the average or maximum size of the distributed shares to participants. From the optimality, it can always attain lower coding rate than the cumulative maps because the cumulative maps cannot attain the optimal distribution in many cases. The same method is also applied to construct SSSs for incomplete access structures and/or ramp access structures.

  • Multipath Interference Test Method for Distributed Amplifiers Using Self-Heterodyne Technique

    Kazuo AIDA  Takahiro OKADA  Youji HINAKO  

     
    PAPER-Optomechatronic Instrumentation

      Vol:
    E90-C No:1
      Page(s):
    18-24

    A method of testing distributed amplifiers is presented; multipath interference (MPI) is detected as a beat spectrum between a multipath signal and a direct signal using a frequency-modulated test signal. A test signal with an approximately 450 MHz frequency deviation at an 80 kHz modulation frequency is emitted from a directly modulated DFB-LD by a pulse stream passing through an equalizer. A receiver consisting of a photodiode and an electrical spectrum analyzer (ESA) detects a baseband power spectrum peak appearing at the frequency of the test signal frequency deviation. MPI is converted from the spectrum peak power using a calibration chart. The test method has decreased the minimum detectable MPI as low as -70 dB, compared with that of -50 dB of conventional test methods. The detailed design and performance of the proposed method are discussed, including the calibration procedure, computer simulations for evaluating systematic errors caused by the repetition rate of the frequency modulated test signal and the fiber length under test, and experiments on single-mode fibers and distributed Raman amplifiers.

  • CMOS Level Converter with Balanced Rise and Fall Delays

    Min-su KIM  Young-Hyun JUN  Sung-Bae PARK  Bai-Sun KONG  

     
    LETTER-Electronic Circuits

      Vol:
    E90-C No:1
      Page(s):
    192-195

    A novel CMOS level converter with balanced rise and fall delays for arbitrary voltage conversion is presented. The proposed level converter was designed using a 90 nm CMOS process technology. The comparison result indicates that the maximum difference between the rise and fall delays of the proposed level converter was reduced by up to 92% compared to the conventional CMOS level converters.

  • Symmetric Discharge Logic against Differential Power Analysis

    Jong Suk LEE  Jae Woon LEE  Young Hwan KIM  

     
    LETTER

      Vol:
    E90-A No:1
      Page(s):
    234-240

    Differential power analysis (DPA) is an effective technique that extracts secret keys from cryptographic systems through statistical analysis of the power traces obtained during encryption and decryption operations. This letter proposes symmetric discharge logic (SDL), a circuit-level countermeasure against DPA, which exhibits uniform power traces for every clock period by maintaining a set of discharge paths independent of input values. This feature minimizes differences in power traces and improves resistance to DPA attacks. HSPICE simulations for the test circuits using 0.18 µm TSMC CMOS process parameters indicate that SDL reduces power differences by an order of magnitude, compared to the existing circuit-level technique.

2341-2360hit(4570hit)