The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SER(2307hit)

701-720hit(2307hit)

  • Network Coordinated Opportunistic Beamforming in Downlink Cellular Networks

    Won-Yong SHIN  Bang Chul JUNG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:4
      Page(s):
    1393-1396

    We propose a network coordinated opportunistic beamforming (NC-OBF) protocol for downlink K-cell networks with M-antenna base stations (BSs). In the NC-OBF scheme, based on pseudo-randomly generated BF vectors, a user scheduling strategy is introduced, where each BS opportunistically selects a set of mobile stations (MSs) whose desired signals generate the minimum interference to the other MSs. Its performance is then analyzed in terms of degrees-of-freedom (DoFs). As our achievability result, it is shown that KM DoFs are achievable if the number N of MSs in a cell scales at least as SNRKM-1, where SNR denotes the received signal-to-noise ratio. Furthermore, by deriving the corresponding upper bound on the DoFs, it is shown that the NC-OBF scheme is DoF-optimal. Note that the proposed scheme does not require the global channel state information and dimension expansion, thereby resulting in easier implementation.

  • Joint Diversity for the Block Diagonalization-Precoded Spatial Multiplexing System with Multiple Users

    Donghun LEE  Hyunduk KANG  Byungjang JEONG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:4
      Page(s):
    1300-1306

    In this paper, we propose a joint diversity algorithm for error-rate minimization in multi-user spatial multiplexing (SM) systems with block diagonalization (BD)-precoding. The proposed algorithm adapts or selects the user set, transmit antenna subset, and the number of streams by an exhaustive search over the available resources. The proposed algorithm makes use of the multi-user diversity (MUD) and the spatial diversity gains as well as the array gain through selecting the best set. Exhaustive search, however, imposes a heavy burden in terms of computational complexity which exponentially increases with the size of the total number of users, streams, and transmit antennas. For complexity reduction, we propose two suboptimal algorithms which reduce the search space by first selecting the best user or by both selecting the best user and fixing the number of streams. Simulation results show that the proposed algorithms improve error probability over the conventional algorithm due to their diversity improvement and the signal-to-noise ratio (SNR) gains over the conventional algorithm. We also show that the suboptimal algorithms significantly reduce the computational complexity over exhaustive search with low-SNR loss.

  • Joint Transceiver Optimization for Multiuser MIMO Amplify-and-Forward Relay Broadcast Systems

    Jun LIU  Xiong ZHANG  Zhengding QIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1443-1447

    This letter considers a dual-hop multiuser MIMO amplify-and-forward relay broadcast system with multi-antenna nodes. A unified scheme is addressed to jointly optimize the linear transceiver based on the sum mean-square error (MSE) and the sum rate criterion. The solutions are iteratively obtained by deriving the gradients of the objective functions for a gradient descent algorithm. Simulation results demonstrate the performance improvements in terms of the BER and the sum rate.

  • Transverse Characteristics of Two-Dimensional Imaging by Fourier Domain Optical Coherence Tomography

    Yu SUGITA  Yoshifumi TAKASAKI  Keiji KURODA  Yuzo YOSHIKUNI  

     
    BRIEF PAPER-Optoelectronics

      Vol:
    E95-C No:4
      Page(s):
    761-764

    A Fourier domain optical coherence tomography system for obtaining a two-dimensional image is constructed. Imaging characteristics of the OCT system in a transverse direction are experimentally investigated. Angle dependence of reflection intensity from a smooth surface is clearly observed and analyzed with consideration of spatial mode coupling to a fiber.

  • Future Service Adaptive Access/Aggregation Network Architecture Open Access

    Hiroki IKEDA  Hidetoshi TAKESHITA  Satoru OKAMOTO  

     
    INVITED PAPER

      Vol:
    E95-B No:3
      Page(s):
    696-705

    The emergence of new services in the cloud computing era has made smooth service migration an important issue in access networks. However, different types of equipment are typically used for the different services due to differences in service requirements. This leads to an increase in not only capital expenditures but also operational expenditures. Here we propose using a service adaptive approach as a solution to this problem. We analyze the requirements of a future access network in terms of service, network, and node. We discuss available access network technologies including the passive optical network, single star network. Finally, we present a future service adaptive access/aggregation network and its architecture along with a programmable optical line terminal and optical network unit, discuss its benefit, and describe example services that it would support.

  • Super-Resolution for Facial Images Based on Local Similarity Preserving

    Jin-Ping HE  Guang-Da SU  Jian-Sheng CHEN  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E95-D No:3
      Page(s):
    892-896

    To reconstruct low-resolution facial photographs which are in focus and without motion blur, a novel algorithm based on local similarity preserving is proposed. It is based on the theories of local manifold learning. The innovations of the new method include mixing point-based entropy and Euclidian distance to search for the nearest points, adding point-to-patch degradation model to restrict the linear weights and compensating the fusing patch to keep energy coherence. The compensation reduces the algorithm dependence on training sets and keeps the luminance of reconstruction constant. Experiments show that our method can effectively reconstruct 1612 images with the magnification of 88 and the 3224 facial photographs in focus and without motion blur.

  • Constructions of Optimal (υ,{4,5,6},1,Q)-OOCs

    Xiyang LI  Pingzhi FAN  Dianhua WU  

     
    LETTER-Coding Theory

      Vol:
    E95-A No:3
      Page(s):
    669-672

    Optical code-division multiple-access (OCDMA) is a promising technique for multimedia transmission in fiber-optic local-area networks (LANs). Variable-weight optical orthogonal codes (OOCs) can be used for OCDMA networks supporting multiple quality of services (QoS). Most constructions for optimal variable-weight OOCs have focused on the case where the number of distinct Hamming weights of all codewords is equal to two, and the codewords of weight 3 are normally included. In this letter, four explicit constructions of optimal (υ,{4,5,6},1,Q)-OOCs are presented, and more new optimal (υ,{4,5,6},1,Q)-OOCs are obtained via recursive constructions. These improve the existing results on optimal variable-weight OOCs with at least three distinct Hamming weights and minimum Hamming weight 4.

  • Virtual Fiber Networking and Impact of Optical Path Grooming on Creating Efficient Layer One Services

    Fumisato NARUSE  Yoshiyuki YAMADA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER

      Vol:
    E95-B No:3
      Page(s):
    723-729

    This paper presents a novel “virtual fiber” network service that exploits wavebands. This service provides virtual direct tunnels that directly convey wavelength paths to connect customer facilities. To improve the resource utilization efficiency of the service, a network design algorithm is developed that can allow intermediate path grooming at limited nodes and can determine the best node location. Numerical experiments demonstrate the effectiveness of the proposed service architecture.

  • Equality Based Flow-Admission Control by Using Mixed Loss and Delay System

    Sumiko MIYATA  Katsunori YAMAOKA  

     
    PAPER-Network System

      Vol:
    E95-B No:3
      Page(s):
    832-844

    We have proposed a novel call admission control (CAC) for maximizing total user satisfaction in a heterogeneous traffic network and showed the effectiveness of our CAC by using an optimal threshold from numerical analysis [1]. In our previous CAC, when a new broadband flow arrives and the total accommodated bandwidth is more than or equal to the threshold, the arriving new broadband flow is rejected. In actual networks, however, users may agree to wait for a certain period until the broadband flow, such as video, begins to play. In this paper, when total accommodated bandwidth is more than or equal to the threshold, arriving broadband flows wait instead of being rejected. As a result, we can greatly improve total user satisfaction.

  • Authentication Binding between SSL/TLS and HTTP

    Takamichi SAITO  Kiyomi SEKIGUCHI  Ryosuke HATSUGAI  

     
    PAPER-Information Network

      Vol:
    E95-D No:3
      Page(s):
    797-803

    While the Secure Socket Layer or Transport Layer Security (SSL/TLS) is assumed to provide secure communications over the Internet, many web applications utilize basic or digest authentication of Hyper Text Transport Protocol (HTTP) over SSL/TLS. Namely, in the scheme, there are two different authentication schemes in a session. Since they are separated by a layer, these are not convenient for a web application. Moreover, the scheme may also cause problems in establishing secure communication. Then we provide a scheme of authentication binding between SSL/TLS and HTTP without modifying SSL/TLS protocols and its implementation, and we show the effectiveness of our proposed scheme.

  • Adaptive Timer-Based Countermeasures against TCP SYN Flood Attacks

    Masao TANABE  Hirofumi AKAIKE  Masaki AIDA  Masayuki MURATA  Makoto IMASE  

     
    PAPER-Internet

      Vol:
    E95-B No:3
      Page(s):
    866-875

    As a result of the rapid development of the Internet in recent years, network security has become an urgent issue. Distributed denial of service (DDoS) attacks are one of the most serious security issues. In particular, 60 percent of the DDoS attacks found on the Internet are TCP attacks, including SYN flood attacks. In this paper, we propose adaptive timer-based countermeasures against SYN flood attacks. Our proposal utilizes the concept of soft-state protocols that are widely used for resource management on the Internet. In order to avoid deadlock, a server releases resources using a time-out mechanism without any explicit requests from its clients. If we change the value of the timer in accordance with the network conditions, we can add more flexibility to the soft-state protocols. The timer is used to manage the resources assigned to half-open connections in a TCP 3-way handshake mechanism, and its value is determined adaptively according to the network conditions. In addition, we report our simulation results to show the effectiveness of our approach.

  • Energy Savings in Cellular Networks Based on Space-Time Structure of Traffic Loads

    Jingbo SUN  Yue WANG  Jian YUAN  Xiuming SHAN  

     
    LETTER-Energy in Electronics Communications

      Vol:
    E95-B No:2
      Page(s):
    591-594

    Since most of energy consumed by the telecommunication infrastructure is due to the Base Transceiver Station (BTS), switching off BTSs when traffic load is low has been recognized as an effective way of saving energy. In this letter, an energy saving scheme is proposed to minimize the number of active BTSs based on the space-time structure of traffic loads as determined by principal component analysis. Compared to existing methods, our approach models traffic loads more accurately, and has a much smaller input size. As it is implemented in an off-line manner, our scheme also avoids excessive communications and computing overheads. Simulation results show that the proposed method has a comparable performance in energy savings.

  • All-Optical Flip-Flop Based on Coupled-Mode DBR Laser Diode for Optically Clocked Operation

    Masaru ZAITSU  Akio HIGO  Takuo TANEMURA  Yoshiaki NAKANO  

     
    PAPER

      Vol:
    E95-C No:2
      Page(s):
    218-223

    A novel type of optically clocked all-optical flip-flop based on a coupled-mode distributed Bragg reflector laser diode is proposed. The device operates as a bistable laser, where the two lasing modes at different wavelength are switched all-optically by injecting a clock pulse together with a set/reset signal. We employ an analytical model based on the two-mode coupled rate equations to verify the basic operation of the device numerically. Optically clocked flip-flop operation is obtained with a set/reset power of 0.60 mW and clock power of 1.8 mW. The device features simple structure, small footprint, and synchronized all-optical flip-flop operation, which should be attractive in the future digital photonic integrated circuits.

  • Reconstruction Depth Adaptive Coding of Digital Holograms

    Jae-Young SIM  Chang-Su KIM  

     
    LETTER-Image

      Vol:
    E95-A No:2
      Page(s):
    617-620

    We propose an adaptive coding algorithm for digital hologram transmission based on server-client interaction. A client can visualize various images of 3D objects from a digital hologram, which are reconstructed on different depth planes. The client's requests for reconstruction depths are sent to the server. The server adaptively encodes and transmits the same object image as the client's reconstructed image. When the client changes the reconstruction depth, only the prediction error of the new image is transmitted. Experimental results show that, in some cases, the proposed algorithm reduces more than half of the distortion at the same bitrate compared with the conventional coding technique.

  • GTS Allocation Scheme for Bidirectional Voice Traffic in IEEE 802.15.4 Multihop Networks

    Junwoo JUNG  Hoki BAEK  Jaesung LIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    493-508

    The IEEE 802.15.4 protocol is considered a promising technology for low-cost low-power wireless personal area networks. Researchers have discussed the feasibility of voice communications over IEEE 802.15.4 networks. To this end, the personal area network (PAN) coordinator allocates guaranteed time slots (GTSs) for voice communications in the beacon-enabled mode of IEEE 802.15.4. Although IEEE 802.15.4 is capable of supporting voice communications by GTS allocation, it is impossible to accommodate voice transmission beyond two hops due to the excessive transmission delay. In this paper, we propose a GTS allocation scheme for bidirectional voice traffic in IEEE 802.15.4 multihop networks. The goal of our proposed scheme is to achieve low end-to-end delay and packet drop ratio without a complex allocation algorithm. Thus, the proposed scheme allocates GTSs to devices for successful completion of voice transmission in a superframe duration. The proposed scheme also considers transceiver switching delay. This is relatively large compared to a time slot due to the low-cost and low-gain antenna designs. We analyze and validate the proposed scheme in terms of average end-to-end delay and packet drop ratio. Our scheme has lower end-to-end delay and packet drop ratio than the basic IEEE 802.15.4 GTS allocation scheme.

  • Proposal of High Performance 1.55 µm Quantum Dot Heterostructure Laser Using InN

    Md. Mottaleb HOSSAIN  Md. Abdullah-AL HUMAYUN  Md. Tanvir HASAN  Ashraful Ghani BHUIYAN  Akihiro HASHIMOTO  Akio YAMAMOTO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E95-C No:2
      Page(s):
    255-261

    This paper reports on a theoretical study and modeling of a 1.55 µm quantum dot heterostructure laser using InN as a promising candidate for the first time. Details of design and theoretical analysis of probability distribution of the optical transition energy, threshold current density, modal gain, and differential quantum efficiency are presented considering a single layer of quantum dots. Dependence of threshold current density on the RMS value of quantum dot size fluctuations and the cavity length is studied. A low threshold current density of ∼51 Acm-2 is achieved at room temperature for a cavity length of 640 µm. An external differential efficiency of ∼65% and a modal gain of ∼12.5 cm-1 are obtained for the proposed structure. The results indicate that the InN based quantum dot laser is a promising one for the optical communication system.

  • Photonic Crystal Nanolaser Biosensors Open Access

    Shota KITA  Shota OTSUKA  Shoji HACHUDA  Tatsuro ENDO  Yasunori IMAI  Yoshiaki NISHIJIMA  Hiroaki MISAWA  Toshihiko BABA  

     
    INVITED PAPER

      Vol:
    E95-C No:2
      Page(s):
    188-198

    High-performance and low-cost sensors are critical devices for high-throughput analyses of bio-samples in medical diagnoses and life sciences. In this paper, we demonstrate photonic crystal nanolaser sensor, which detects the adsorption of biomolecules from the lasing wavelength shift. It is a promising device, which balances a high sensitivity, high resolution, small size, easy integration, simple setup and low cost. In particular with a nanoslot structure, it achieves a super-sensitivity in protein sensing whose detection limit is three orders of magnitude lower than that of standard surface-plasmon-resonance sensors. Our investigations indicate that the nanoslot acts as a protein condenser powered by the optical gradient force, which arises from the strong localization of laser mode in the nanoslot.

  • A High Speed Reconfigurable Face Detection Architecture Based on AdaBoost Cascade Algorithm

    Weina ZHOU  Lin DAI  Yao ZOU  Xiaoyang ZENG  Jun HAN  

     
    PAPER-Application

      Vol:
    E95-D No:2
      Page(s):
    383-391

    Face detection has been an independent technology playing an important role in more and more fields, which makes it necessary and urgent to have its architecture reconfigurable to meet different demands on detection capabilities. This paper proposed a face detection architecture, which could be adjusted by the user according to the background, the sensor resolution, the detection accuracy and speed in different situations. This user adjustable mode makes the reconfiguration simple and efficient, and is especially suitable for portable mobile terminals whose working condition often changes frequently. In addition, this architecture could work as an accelerator to constitute a larger and more powerful system integrated with other functional modules. Experimental results show that the reconfiguration of the architecture is very reasonable in face detection and synthesized report also indicates its advantage on little consumption of area and power.

  • Development and Evaluation of Roadside/Obstacle Detection Method Using 3D Scanned Data Processing

    Hiroshi YAMAMOTO  Yoshinori ISHII  Katsuyuki YAMAZAKI  

     
    LETTER

      Vol:
    E95-D No:2
      Page(s):
    540-541

    In this paper, we have reported the development of a snowblower support system which can safely navigate snowblowers, even during a whiteout, with the combination of a very accurate GPS system, so called RTK-GPS, and a unique and highly accurate map of roadsides and obstacles on roads. Particularly emphasized new techniques in this paper are ways to detect accurate geographical positions of roadsides and obstacles by utilizing and analyzing 3D laser scanned data, whose data has become available in recent days. The experiment has shown that the map created by the methods and RTK-GPS can sufficiently navigate snowblowers, whereby a secure and pleasant social environment can be archived in snow areas of Japan. In addition, proposed methods are expected to be useful for other systems such as a quick development of a highly accurate road map, a safely navigation of a wheeled chair, and so on.

  • Two Phase Admission Control for QoS Mobile Ad Hoc Networks

    Chien-Sheng CHEN  Yi-Wen SU  Wen-Hsiung LIU  Ching-Lung CHI  

     
    PAPER

      Vol:
    E95-D No:2
      Page(s):
    442-450

    In this paper a novel and effective two phase admission control (TPAC) for QoS mobile ad hoc networks is proposed that satisfies the real-time traffic requirements in mobile ad hoc networks. With a limited amount of extra overhead, TPAC can avoid network congestions by a simple and precise admission control which blocks most of the overloading flow-requests in the route discovery process. When compared with previous QoS routing schemes such as QoS-aware routing protocol and CACP protocols, it is shown from system simulations that the proposed scheme can increase the system throughput and reduce both the dropping rate and the end-to-end delay. Therefore, TPAC is surely an effective QoS-guarantee protocol to provide for real-time traffic.

701-720hit(2307hit)