The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SER(2307hit)

1041-1060hit(2307hit)

  • Downlink Transmission Scheme for Wireless MIMO Broadcast Channels with Multiuser Diversity

    Hao LI  Changqing XU  Pingzhi FAN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E91-A No:8
      Page(s):
    2174-2182

    Sum power iterative water-filling (SPIWF) algorithm provides sum-rate-optimal transmission scheme for wireless multiple-input multiple-output (MIMO) broadcast channels (BC), whereas it suffers from its high complexity. In this paper, we propose a new transmission scheme based on a novel block zero-forcing dirty paper coding (Block ZF-DPC) strategy and multiuser-diversity-achieving user selection procedure. The Block ZF-DPC can be considered as an extension of existing ZF-DPC into MIMO BCs. Two user selection algorithms having linear increasing complexity with the number of users have been proposed. One aims at maximizing the achievable sum rate directly and the other is based on Gram-Schmidt Orthogonalization (GSO) and Frobenius norm. The proposed scheme is shown to achieve a sum rate close to the sum capacity of MIMO BC and obtain optimal multiplexing and multiuser diversity gain. In addition, we also show that both selection algorithms achieve a significant part of the sum rate of the optimal greedy selection algorithm at low computation expenditure.

  • MIMO Broadcast Transmission Strategy over Fast Time-Varying Channels

    Hongmei WANG  Xibin XU  Ming ZHAO  Weiling WU  Yan YAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:8
      Page(s):
    2731-2735

    In time-varying channels, the channel state information available at the transmitter (CSIT) is outdated due to inherent time delay between the uplink channel estimation and the downlink data transmission in TDD systems. In this letter, we propose an iterative precoding method and a linear decoding method which are both based on minimum mean-squared error (MMSE) criteria to mitigate the interference among data streams and users created by outdated CSIT for multiuser MIMO downlink systems. Analysis and simulation results show that the proposed method can effectively reduce the impairment of the outdated CSIT and improve the system capacity.

  • Deployable Overlay Network for Defense against Distributed SYN Flood Attacks

    Yuichi OHSITA  Shingo ATA  Masayuki MURATA  

     
    PAPER-Internet

      Vol:
    E91-B No:8
      Page(s):
    2618-2630

    Distributed denial-of-service attacks on public servers have recently become more serious. Most of them are SYN flood attacks, since the malicious attackers can easily exploit the TCP specification to generate traffic making public servers unavailable. We need a defense method which can protect legitimate traffic so that end users can connect the target servers during such attacks. In this paper, we propose a new framework, in which all of the TCP connections to the victim servers from a domain are maintained at the gateways of the domain (i.e., near the clients). We call the nodes maintaining the TCP connection defense nodes. The defense nodes check whether arriving packets are legitimate or not by maintaining the TCP connection. That is, the defense nodes delegate reply packets to the received connection request packets and identify the legitimate packets by checking whether the clients reply to the reply packets. Then, only identified traffic are relayed via overlay networks. As a result, by deploying the defense nodes at the gateways of a domain, the legitimate packets from the domain are relayed apart from other packets including attack packets and protected. Our simulation results show that our method can protect legitimate traffic from the domain deploying our method. We also describe the deployment scenario of our defense mechanism.

  • Modified Direct Insertion/Cancellation Method Based Sample Rate Conversion for Software Defined Radio

    Anas Muhamad BOSTAMAM  Yukitoshi SANADA  Hideki MINAMI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:8
      Page(s):
    2648-2656

    In this paper, a new fractional sample rate conversion (SRC) scheme based on a direct insertion/cancellation scheme is proposed. This scheme is suitable for signals that are sampled at a high sample rate and converted to a lower sample rate. The direct insertion/cancellation scheme may achieve low-complexity and lower power consumption as compared to the other SRC techniques. However, the direct insertion/cancellation technique suffers from large aliasing and distortion. The aliasing from an adjacent channel interferes the desired signal and degrades the performance. Therefore, a modified direct insertion/cancellation scheme is proposed in order to realize high performance resampling.

  • Outage Performance and Average Symbol Error Rate of M-QAM for Maximum Ratio Combining with Multiple Interferers

    Kyung Seung AHN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E91-A No:8
      Page(s):
    2205-2212

    In this paper, we investigate the performance of maximum ratio combining (MRC) in the presence of multiple cochannel interferences over a flat Rayleigh fading channel. Closed-form expressions of signal-to-interference-plus-noise ratio (SINR), outage probability, and average symbol error rate (SER) of quadrature amplitude modulation (QAM) with M-ary signaling are obtained for unequal-power interference-to-noise ratio (INR). We also provide an upper-bound for the average SER using moment generating function (MGF) of the SINR. Moreover, we quantify the array gain loss between pure MRC (MRC system in the absence of CCI) and MRC system in the presence of CCI. Finally, we verify our analytical results by numerical simulations.

  • Dynamic Bandwidth Allocation for QoS in IEEE 802.16 Broadband Wireless Networks

    Jae-Han JEON  Jong-Tae LIM  

     
    LETTER-Network

      Vol:
    E91-B No:8
      Page(s):
    2707-2710

    IEEE 802.16 broadband wireless access (BWA) technology is suitable for providing multimedia applications without accessing the wired networks directly. Although IEEE 802.16 standard well defines the quality of service (QoS) framework, it makes no specific recommendation with regard to the bandwidth allocation. In this paper, we propose an algorithm for allocating bandwidth in response to dynamic changes in the arrival rate such that the total bandwidth is efficiently utilized.

  • Recursive Estimation Algorithm Based on Covariances for Uncertainly Observed Signals Correlated with Noise

    Seiichi NAKAMORI  Raquel CABALLERO-AGUILA  Aurora HERMOSO-CARAZO  Jose D. JIMENEZ-LOPEZ  Josefa LINARES-PEREZ  

     
    PAPER-Digital Signal Processing

      Vol:
    E91-A No:7
      Page(s):
    1706-1712

    The least-squares linear filtering and fixed-point smoothing problems of uncertainly observed signals are considered when the signal and the observation additive noise are correlated at any sampling time. Recursive algorithms, based on an innovation approach, are proposed without requiring the knowledge of the state-space model generating the signal, but only the autocovariance and crosscovariance functions of the signal and the observation white noise, as well as the probability that the signal exists in the observations.

  • Designs and Fabrications of Photonic Crystal Fiber Couplers with Air Hole Controlled Tapers

    Hirohisa YOKOTA  Hiroki KAWASHIRI  Yutaka SASAKI  

     
    PAPER

      Vol:
    E91-C No:7
      Page(s):
    1136-1141

    For the construction of photonic crystal fiber (PCF) systems using their unique properties, a PCF coupler (PCFC) is one of the key components of the systems. The characteristics of the PCFC depend on the state of air holes in the tapered region of the PCFC because the state of air holes in the tapered region affects light propagation in the PCFC taper. In this paper, coupling characteristics of PCFCs were theoretically investigated. In PCFCs with air hole remaining tapers, we found that a smaller elongation ratio i.e. a stronger elongation is required to obtain optical coupling as an air hole pitch or a ratio of air hole diameter to pitch is larger. In PCFCs with air hole collapsed tapers, it was clarified that a dependence of extinction ratio on air hole collapsed elongation ratio is higher for smaller elongation ratio. It was also clarified that an air hole remaining PCFC has slow wavelength characteristics in extinction ratio compared to an air hole collapsed PCFC. Air hole remaining PCFCs and air hole collapsed PCFCs were fabricated using a CO2 laser irradiation technique. We could successfully control whether air holes in the PCFC taper were remaining or collapsed by adjusting the irradiated laser power in the elongation process of the PCFC fabrication. It was experimentally clarified that the air hole remaining PCFC has slow wavelength characteristics in extinction ratio compared to the air hole collapsed PCFC. The tendencies of the measured wavelength characteristics of PCFCs agree with those of numerical results.

  • High-Performance 76-GHz Planar Gunn VCO

    Yoshimichi FUKASAWA  Kiyoshi KAWAGUCHI  Takashi YOSHIDA  Takahiro SUGIYAMA  Atsushi NAKAGAWA  

     
    PAPER-GaAs- and InP-Based Devices

      Vol:
    E91-C No:7
      Page(s):
    1098-1103

    A 76-GHz Gunn voltage-controlled oscillator (VCO) with a high output power and a wide tuning-frequency range was fabricated by optimizing VCO circuits and using laser micromachining. The tuning-frequency range of the fabricated Gunn VCO was more than two times higher than that attained in our previous experiments by optimizing VCO circuits. The VCO attained a tuning-frequency range of 493 MHz, output power variation of 1.0 dB, and tuning-frequency linearity of 6.1% over a tuning-voltage range from 0 to 10 V. Its power consumption was 2.0 W at operation voltage of 3.6 V. And it measured output power was 13.3 dBm with DC-RF conversion efficiency of 1.0% at 76.5 GHz. Moreover, under fundamental-mode operation, it achieved low phase noise of -107.8 dBc/Hz at an offset frequency of 1 MHz. Since laser micromachining was used in fabricating the Gunn VCO, the reproducibility of its RF performance was improved.

  • Observer-Based Synchronization for a Class of Unknown Chaos Systems with Adaptive Fuzzy-Neural Network

    Bing-Fei WU  Li-Shan MA  Jau-Woei PERNG  

     
    PAPER-Language, Thought, Knowledge and Intelligence

      Vol:
    E91-A No:7
      Page(s):
    1797-1805

    This investigation applies the adaptive fuzzy-neural observer (AFNO) to synchronize a class of unknown chaotic systems via scalar transmitting signal only. The proposed method can be used in synchronization if nonlinear chaotic systems can be transformed into the canonical form of Lur'e system type by the differential geometric method. In this approach, the adaptive fuzzy-neural network (FNN) in AFNO is adopted on line to model the nonlinear term in the transmitter. Additionally, the master's unknown states can be reconstructed from one transmitted state using observer design in the slave end. Synchronization is achieved when all states are observed. The utilized scheme can adaptively estimate the transmitter states on line, even if the transmitter is changed into another chaos system. On the other hand, the robustness of AFNO can be guaranteed with respect to the modeling error, and external bounded disturbance. Simulation results confirm that the AFNO design is valid for the application of chaos synchronization.

  • Specific and Class Object Recognition for Service Robots through Autonomous and Interactive Methods

    Al MANSUR  Yoshinori KUNO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:6
      Page(s):
    1793-1803

    Service robots need to be able to recognize and identify objects located within complex backgrounds. Since no single method may work in every situation, several methods need to be combined and robots have to select the appropriate one automatically. In this paper we propose a scheme to classify situations depending on the characteristics of the object of interest and user demand. We classify situations into four groups and employ different techniques for each. We use Scale-invariant feature transform (SIFT), Kernel Principal Components Analysis (KPCA) in conjunction with Support Vector Machine (SVM) using intensity, color, and Gabor features for five object categories. We show that the use of appropriate features is important for the use of KPCA and SVM based techniques on different kinds of objects. Through experiments we show that by using our categorization scheme a service robot can select an appropriate feature and method, and considerably improve its recognition performance. Yet, recognition is not perfect. Thus, we propose to combine the autonomous method with an interactive method that allows the robot to recognize the user request for a specific object and class when the robot fails to recognize the object. We also propose an interactive way to update the object model that is used to recognize an object upon failure in conjunction with the user's feedback.

  • Scheduling Algorithms for Maximizing Throughput with Zero-Forcing Beamforming in a MIMO Wireless System

    Augusto FORONDA  Chikara OHTA  Hisashi TAMAKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    1952-1961

    Dirty paper coding (DPC) is a strategy to achieve the region capacity of multiple input multiple output (MIMO) downlink channels and a DPC scheduler is throughput optimal if users are selected according to their queue states and current rates. However, DPC is difficult to implement in practical systems. One solution, zero-forcing beamforming (ZFBF) strategy has been proposed to achieve the same asymptotic sum rate capacity as that of DPC with an exhaustive search over the entire user set. Some suboptimal user group selection schedulers with reduced complexity based on ZFBF strategy (ZFBF-SUS) and proportional fair (PF) scheduling algorithm (PF-ZFBF) have also been proposed to enhance the throughput and fairness among the users, respectively. However, they are not throughput optimal, fairness and throughput decrease if each user queue length is different due to different users channel quality. Therefore, we propose two different scheduling algorithms: a throughput optimal scheduling algorithm (ZFBF-TO) and a reduced complexity scheduling algorithm (ZFBF-RC). Both are based on ZFBF strategy and, at every time slot, the scheduling algorithms have to select some users based on user channel quality, user queue length and orthogonality among users. Moreover, the proposed algorithms have to produce the rate allocation and power allocation for the selected users based on a modified water filling method. We analyze the schedulers complexity and numerical results show that ZFBF-RC provides throughput and fairness improvements compared to the ZFBF-SUS and PF-ZFBF scheduling algorithms.

  • Antenna Selection Method for Terminal Antennas Employing Orthogonal Polarizations and Patterns in Outdoor Multiuser MIMO System

    Naoki HONMA  Riichi KUDO  Kentaro NISHIMORI  Yasushi TAKATORI  Atsushi OHTA  Shuji KUBOTA  

     
    PAPER-Smart Antennas & MIMO

      Vol:
    E91-B No:6
      Page(s):
    1752-1759

    This paper proposes an antenna selection method for terminal antennas employing orthogonal polarizations and patterns, which is suitable for outdoor MultiUser Multi-Input Multi-Output (MU-MIMO) systems. In addition, this paper introduces and verifies two other antenna selection methods for comparison. For the sake of simplicity, three orthogonal dipoles are considered, and this antenna configuration using the proposed selection method is compared to an antenna configuration with three vertical or horizontal dipoles. In the proposed antenna selection method, we always choose the vertical dipole, and choose one of two horizontal dipoles, which are orthogonal to each other, based on the Signal-to-Noise Ratio (SNR). We measured the MU-MIMO transmission properties and found that the proposed selection method employing the antenna with orthogonal polarizations and patterns can offer fairly high channel capacity in a multiuser scenario.

  • Throughput Performance Improvement Using Complexity-Reduced User Scheduling Algorithm in Uplink Multi-User MIMO/SDM Systems

    Manabu MIKAMI  Teruya FUJII  

     
    PAPER-Smart Antennas & MIMO

      Vol:
    E91-B No:6
      Page(s):
    1724-1733

    Multi-user MIMO (Multiple Input Multiple Output) systems, in which multiple Mobile Stations (MSs) equipped with multiple antennas simultaneously communicate with a Base Station (BS) equipped with multiple antennas, at the same frequency, are attracting attention because of their potential for improved transmission performance in wireless communications. In the uplink of Space Division Multiplexing based multi-user MIMO (multi-user MIMO/SDM) systems that do not require full Channel State Information (CSI) at the transmitters, selecting active MS antennas, which corresponds to scheduling transmit antennas, is an effective technique. The Full search Selection Algorithm based on exhaustive search (FSA) has been studied as an optimal active MS antenna selection algorithm for multi-user MIMO systems. Unfortunately, FSA suffers from extreme computational complexity given large numbers of MSs. To solve this problem, this paper introduces the Gram-Schmidt orthogonalization based Selection Algorithm (GSSA) to uplink multi-user MIMO/SDM systems. GSSA is a suboptimal active MS antenna selection algorithm that offers lower computational complexity than the optimal algorithm. This paper evaluates the transmission performance improvement of GSSA in uplink multi-user MIMO/SDM systems under realistic propagation conditions such as spatially correlated BS antennas and clarifies the effectiveness of GSSA.

  • Lightweight Privacy-Preserving Authentication Protocols Secure against Active Attack in an Asymmetric Way

    Yang CUI  Kazukuni KOBARA  Kanta MATSUURA  Hideki IMAI  

     
    PAPER-Authentication

      Vol:
    E91-D No:5
      Page(s):
    1457-1465

    As pervasive computing technologies develop fast, the privacy protection becomes a crucial issue and needs to be coped with very carefully. Typically, it is difficult to efficiently identify and manage plenty of the low-cost pervasive devices like Radio Frequency Identification Devices (RFID), without leaking any privacy information. In particular, the attacker may not only eavesdrop the communication in a passive way, but also mount an active attack to ask queries adaptively, which is obviously more dangerous. Towards settling this problem, in this paper, we propose two lightweight authentication protocols which are privacy-preserving against active attack, in an asymmetric way. That asymmetric style with privacy-oriented simplification succeeds to reduce the load of low-cost devices and drastically decrease the computation cost for the management of server. This is because that, unlike the usual management of the identities, our approach does not require any synchronization nor exhaustive search in the database, which enjoys great convenience in case of a large-scale system. The protocols are based on a fast asymmetric encryption with specialized simplification and only one cryptographic hash function, which consequently assigns an easy work to pervasive devices. Besides, our results do not require the strong assumption of the random oracle.

  • Power Reduction during Scan Testing Based on Multiple Capture Technique

    Lung-Jen LEE  Wang-Dauh TSENG  Rung-Bin LIN  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E91-C No:5
      Page(s):
    798-805

    In this paper, we present a multiple capture approach to reducing the peak power as well as average power consumption during testing. The basic idea behind is to divide a scan chain into two sub-scan chains, and only one sub-scan chain will be enabled at a time during the scan shift or capture operations. We develop a pattern insertion technique to efficiently deal with the capture violation problem during the capture cycle. In order to alleviate the timing cost due to the insertion of redundant patterns, a scan chain partitioning method incorporated with test pattern reordering is developed to reduce the testing time. Experimental results for large ISCAS'89 benchmark circuits show that the proposed approach can efficiently reduce peak and average power with little timing overhead.

  • IP Packet Size Entropy-Based Scheme for Detection of DoS/DDoS Attacks

    Ping DU  Shunji ABE  

     
    PAPER-Network Security

      Vol:
    E91-D No:5
      Page(s):
    1274-1281

    Denial of service (DoS) attacks have become one of the most serious threats to the Internet. Enabling detection of attacks in network traffic is an important and challenging task. However, most existing volume-based schemes can not detect short-term attacks that have a minor effect on traffic volume. On the other hand, feature-based schemes are not suitable for real-time detection because of their complicated calculations. In this paper, we develop an IP packet size entropy (IPSE)-based DoS/DDoS detection scheme in which the entropy is markedly changed when traffic is affected by an attack. Through our analysis, we find that the IPSE-based scheme is capable of detecting not only long-term attacks but also short-term attacks that are beyond the volume-based schemes' ability to detect. Moreover, we test our proposal using two typical Internet traffic data sets from DARPA and SINET, and the test results show that the IPSE-based detection scheme can provide detection of DoS/DDoS attacks not only in a local area network (DARPA) and but also in academic backbone network (SINET).

  • A Token-Bucket Based Rate Control Algorithm with Maximum and Minimum Rate Constraints

    Han Seok KIM  Eun-Chan PARK  Seo Weon HEO  

     
    LETTER-Network

      Vol:
    E91-B No:5
      Page(s):
    1623-1626

    We propose a token-bucket based rate control algorithm that satisfies both maximum and minimum rate constraints with computational complexity of O(1). The proposed algorithm allocates the remaining bandwidth in a strict priority queuing manner to the flows with different priorities and in a weighted fair queuing manner to the flows within the same priority.

  • Multiuser Detection for Asynchronous Multicarrier CDMA Using Particle Swarm Optimization

    Muhammad ZUBAIR  Muhammad A.S. CHOUDHRY  Aqdas NAVEED  Ijaz Mansoor QURESHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1636-1639

    Due to the computational complexity of the optimum maximum likelihood detector (OMD) growing exponentially with the number of users, suboptimum techniques have received significant attention. We have proposed the particle swarm optimization (PSO) for the multiuser detection (MUD) in asynchronous multicarrier code division multiple access (MC-CDMA) system. The performance of PSO based MUD is near optimum, while its computational complexity is far less than OMD. Performance of PSO-MUD has also been shown to be better than that of genetic algorithm based MUD (GA-MUD) at practical SNR.

  • Design and Performance Evaluation of Contention Resolution Schemes with QoS Support for Multimedia Traffic in High Bit-Rate Wireless Communications

    Warakorn SRICHAVENGSUP  Akkarapat CHAROENPANICHKIT  Lunchakorn WUTTISITTIKULKIJ  

     
    PAPER-Definition and Modeling of Application Level QoS

      Vol:
    E91-B No:5
      Page(s):
    1295-1308

    This paper considers the problem of contention resolution algorithm for multi-class with quality of service (QoS) constrained for wireless communication. Five different channel reservation schemes are proposed, namely, UNI+MLA, UNI+DS, UNI+DS+MLA, Partial UNI and Partial UNI+MLA schemes for multimedia traffic, all are extensions of our recently proposed UNI scheme for single-class traffic. The goal is to achieve the highest system performance and enable each traffic type to meet its QoS requirements. We evaluate the performance of each scheme by mathematical analysis. The numerical results show that our proposed schemes are effective in enabling each traffic type to achieve the best successful rate possible in this kind of environment. Finally when comparing between our proposed schemes and conventional technique in terms of both throughput performance and QoS requirements it is found that the UNI+MLA, UNI+DS+MLA and Partial UNI+MLA schemes are relatively efficient and suitable for practical applications.

1041-1060hit(2307hit)