The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

1281-1300hit(16314hit)

  • Analysis of The Similarity of Individual Knowledge and The Comprehension of Partner's Representation during Collaborative Concept Mapping with Reciprocal Kit Build Approach

    Lia SADITA  Pedro Gabriel Fonteles FURTADO  Tsukasa HIRASHIMA  Yusuke HAYASHI  

     
    PAPER-Educational Technology

      Pubricized:
    2020/04/10
      Vol:
    E103-D No:7
      Page(s):
    1722-1731

    Concept mapping is one of the instructional strategies implemented in collaborative learning to support discourse and learning. While prior studies have established its positive significance on the learning achievements and attitudes of students, they have also discovered that it can lead to students conducting less discussion on conceptual knowledge compared to procedural and team coordination. For instance, some inaccurate ideas are never challenged and can become ingrained. Designing a learning environment where individual knowledge is acknowledged and developed constructively is necessary to achieve similarity of individual knowledge after collaboration. This study applies the Reciprocal Kit Build (RKB) approach before collaborative concept mapping. The approach consists of three main phases: (1) individual map construction; (2) re-constructional map building; and (3) difference map discussion. Finally, each team will build a group map. Previous studies have shown that the visualization of similarities and differences during the third phase correlates with the improvement of concept map quality. The current paper presents our investigation on the effects of the first and second phases in terms of the final group products. We analyze the correlations between the similarity of individual knowledge represented in the first-phase maps, the comprehension of partner's representation during the second phase, and the changes of map scores. Our findings indicate that comprehension level is a stronger predictor than the similarity of individual knowledge for estimating score gain. The ways in which patterns of knowledge transfer from individual to group maps, which exhibit how the group products are built based on individual inputs, are also discussed. We illustrate that the number of shared and unshared links in the group solutions are proportionally distributed, and that the number of reconstructed links dominates the group solutions, rather than the non-reconstructed ones.

  • A Multilayer Steganography Method with High Embedding Efficiency for Palette Images

    Han-Yan WU  Ling-Hwei CHEN  Yu-Tai CHING  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2020/04/07
      Vol:
    E103-D No:7
      Page(s):
    1608-1617

    Embedding efficiency is an important issue in steganography methods. Matrix embedding (1, n, h) steganography was proposed by Crandall to achieve high embedding efficiency for palette images. This paper proposes a steganography method based on multilayer matrix embedding for palette images. First, a parity assignment is provided to increase the image quality. Then, a multilayer matrix embedding (k, 1, n, h) is presented to achieve high embedding efficiency and capacity. Without modifying the color palette, hk secret bits can be embedded into n pixels by changing at most k pixels. Under the same capacity, the embedding efficiency of the proposed method is compared with that of pixel-based steganography methods. The comparison indicates that the proposed method has higher embedding efficiency than pixel-based steganography methods. The experimental results also suggest that the proposed method provides higher image quality than some existing methods under the same embedding efficiency and capacity.

  • Throughput Analysis of Dynamic Multi-Hop Shortcut Communications for a Simple Model

    Satoshi YAMAZAKI  Ryuji ASAKURA  Kouji OHUCHI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:7
      Page(s):
    951-954

    Previously, dynamic multi-hop shortcut (DMHS) communications to improve packet delivery rate and reduce end-to-end transmission delay was proposed. In this letter, we theoretically derive the end-to-end throughput of DMHS considering the retransmission at each node for a simple network model without considering collision. Moreover, we show the validity of the derived expression using computer simulations, and we clarify the effect of various parameters on the throughput using DMHS.

  • A Flexible Overloaded MIMO Receiver with Adaptive Selection of Extended Rotation Matrices

    Satoshi DENNO  Akihiro KITAMOTO  Ryosuke SAWADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/01/17
      Vol:
    E103-B No:7
      Page(s):
    787-795

    This paper proposes a novel flexible receiver with virtual channels for overloaded multiple-input multiple-output (MIMO) channels. The receiver applies extended rotation matrices proposed in the paper for the flexibility. In addition, adaptive selection of the extended rotation matrices is proposed for further performance improvement. We propose two techniques to reduce the computational complexity of the adaptive selection. As a result, the proposed receiver gives us an option to reduce the complexity with a slight decrease in the transmission performance by changing receiver configuration parameters. A computer simulation reveals that the adaptive selection attains a gain of about 3dB at the BER of 10-3.

  • Analytical Evaluation of a WLAN with Dense Network Nodes Considering Capture Effect

    Takeshi KANEMATSU  Yuto YOSHIDA  Zhetao LI  Tingrui PEI  Young-June CHOI  Kien NGUYEN  Hiroo SEKIYA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/01/20
      Vol:
    E103-B No:7
      Page(s):
    815-825

    In a dense wireless network, concurrent transmissions normally increase interference and reduce network performance. In such an environment, however, there is a possibility that a frame can be decoded correctly if its receive power is higher than that of another frame by some predefined value (i.e., the so-called capture effect). As a result, the unfairness of throughputs among network nodes likely occurs in that context. This research aims to quantify the throughput performance of only one access point Wireless Local Area Networks (WLANs) with dense network nodes in the presence of the capture effect. We first propose a new analytical model, which can express not only WLANs' throughputs but also WLANs' unfairness transmission. The validity of the proposed model is confirmed by simulation results. Second, relying on the model, we present a novel Medium Access Control (MAC) protocol-based solution, which realizes throughput fairness between network nodes induced by the capture effect.

  • A Node-Grouping Based Spatial Spectrum Reuse Method for WLANs in Dense Residential Scenarios

    Jin LIU  Masahide HATANAKA  Takao ONOYE  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:7
      Page(s):
    917-927

    Lately, an increasing number of wireless local area network (WLAN) access points (APs) are deployed to serve an ever increasing number of mobile stations (STAs). Due to the limited frequency spectrum, more and more AP and STA nodes try to access the same channel. Spatial spectrum reuse is promoted by the IEEE 802.11ax task group through dynamic sensitivity control (DSC), which permits cochannel operation when the received signal power at the prospective transmitting node (PTN) is lower than an adjusted carrier sensing threshold (CST). Previously-proposed DSC approaches typically calculate the CST without node grouping by using a margin parameter that remains fixed during operation. Setting the margin has previously been done heuristically. Finding a suitable value has remained an open problem. Therefore, herein, we propose a DSC approach that employs a node grouping method for adaptive calculation of the CST at the PTN with a channel-aware and margin-free formula. Numerical simulations for dense residential WLAN scenario reveal total throughput and Jain's fairness index gains of 8.4% and 7.6%, respectively, vs. no DSC (as in WLANs deployed to present).

  • Siamese Attention-Based LSTM for Speech Emotion Recognition

    Tashpolat NIZAMIDIN  Li ZHAO  Ruiyu LIANG  Yue XIE  Askar HAMDULLA  

     
    LETTER-Engineering Acoustics

      Vol:
    E103-A No:7
      Page(s):
    937-941

    As one of the popular topics in the field of human-computer interaction, the Speech Emotion Recognition (SER) aims to classify the emotional tendency from the speakers' utterances. Using the existing deep learning methods, and with a large amount of training data, we can achieve a highly accurate performance result. Unfortunately, it's time consuming and difficult job to build such a huge emotional speech database that can be applicable universally. However, the Siamese Neural Network (SNN), which we discuss in this paper, can yield extremely precise results with just a limited amount of training data through pairwise training which mitigates the impacts of sample deficiency and provides enough iterations. To obtain enough SER training, this study proposes a novel method which uses Siamese Attention-based Long Short-Term Memory Networks. In this framework, we designed two Attention-based Long Short-Term Memory Networks which shares the same weights, and we input frame level acoustic emotional features to the Siamese network rather than utterance level emotional features. The proposed solution has been evaluated on EMODB, ABC and UYGSEDB corpora, and showed significant improvement on SER results, compared to conventional deep learning methods.

  • A Triple-Band CP Rectenna for Ambient RF Energy Harvesting

    Guiping JIN  Guangde ZENG  Long LI  Wei WANG  Yuehui CUI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/01/10
      Vol:
    E103-B No:7
      Page(s):
    759-766

    A triple-band CP rectenna for ambient RF energy harvesting is presented in this paper. A simple broadband CP slot antenna has been proposed with the bandwidth of 51.1% operating from 1.53 to 2.58GHz, which can cover GSM-1800, UMTS-2100 and 2.45GHz WLAN bands. Accordingly, a triple-band rectifying circuit is designed to convert RF energy in the above bands, with the maximum RF-DC conversion efficiency of 42.5% at a relatively low input power of -5dBm. Additionally, the rectenna achieves the maximum conversion efficiency of 12.7% in the laboratory measurements. The measured results show a good performance in the laboratory measurements.

  • Detecting and Understanding Online Advertising Fraud in the Wild

    Fumihiro KANEI  Daiki CHIBA  Kunio HATO  Katsunari YOSHIOKA  Tsutomu MATSUMOTO  Mitsuaki AKIYAMA  

     
    PAPER-Network and System Security

      Pubricized:
    2020/03/24
      Vol:
    E103-D No:7
      Page(s):
    1512-1523

    While the online advertisement is widely used on the web and on mobile applications, the monetary damages by advertising frauds (ad frauds) have become a severe problem. Countermeasures against ad frauds are evaded since they rely on noticeable features (e.g., burstiness of ad requests) that attackers can easily change. We propose an ad-fraud-detection method that leverages robust features against attacker evasion. We designed novel features on the basis of the statistics observed in an ad network calculated from a large amount of ad requests from legitimate users, such as the popularity of publisher websites and the tendencies of client environments. We assume that attackers cannot know of or manipulate these statistics and that features extracted from fraudulent ad requests tend to be outliers. These features are used to construct a machine-learning model for detecting fraudulent ad requests. We evaluated our proposed method by using ad-request logs observed within an actual ad network. The results revealed that our designed features improved the recall rate by 10% and had about 100,000-160,000 fewer false negatives per day than conventional features based on the burstiness of ad requests. In addition, by evaluating detection performance with long-term dataset, we confirmed that the proposed method is robust against performance degradation over time. Finally, we applied our proposed method to a large dataset constructed on an ad network and found several characteristics of the latest ad frauds in the wild, for example, a large amount of fraudulent ad requests is sent from cloud servers.

  • Comparative Analysis of Three Language Spheres: Are Linguistic and Cultural Differences Reflected in Password Selection Habits?

    Keika MORI  Takuya WATANABE  Yunao ZHOU  Ayako AKIYAMA HASEGAWA  Mitsuaki AKIYAMA  Tatsuya MORI  

     
    PAPER-Network and System Security

      Pubricized:
    2020/04/10
      Vol:
    E103-D No:7
      Page(s):
    1541-1555

    This work aims to determine the propensity of password creation through the lens of language spheres. To this end, we consider four different countries, each with a different culture/language: China/Chinese, United Kingdom (UK) and India/English, and Japan/Japanese. We first employ a user study to verify whether language and culture are reflected in password creation. We found that users in India, Japan, and the UK prefer to create their passwords from base words, and the kinds of words they are incorporated into passwords vary between countries. We then test whether the findings obtained through the user study are reflected in a corpus of leaked passwords. We found that users in China and Japan prefer dates, while users in India, Japan, and the UK prefer names. We also found that cultural words (e.g., “sakura” in Japan and “football” in the UK) are frequently used to create passwords. Finally, we demonstrate that the knowledge on the linguistic background of targeted users can be exploited to increase the speed of the password guessing process.

  • Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption

    Pratish DATTA  Tatsuaki OKAMOTO  Katsuyuki TAKASHIMA  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2020/04/13
      Vol:
    E103-D No:7
      Page(s):
    1556-1597

    This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive adversaries for predicate encryption (PE) schemes supporting expressive predicate families under standard computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on public attributes, followed by an inner-product predicate on private attributes. This simultaneously generalizes attribute-based encryption (ABE) for boolean formulas and ABP's as well as strongly attribute-hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best possible in the simulation-based adaptive security framework. This directly implies that our construction also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive setting. Moreover, our result advances the current state of the art in both the fields of simulation-based and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products.

  • Trojan-Net Classification for Gate-Level Hardware Design Utilizing Boundary Net Structures

    Kento HASEGAWA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    LETTER-Network and System Security

      Pubricized:
    2020/03/19
      Vol:
    E103-D No:7
      Page(s):
    1618-1622

    Cybersecurity has become a serious concern in our daily lives. The malicious functions inserted into hardware devices have been well known as hardware Trojans. In this letter, we propose a hardware-Trojan classification method at gate-level netlists utilizing boundary net structures. We first use a machine-learning-based hardware-Trojan detection method and classify the nets in a given netlist into a set of normal nets and a set of Trojan nets. Based on the classification results, we investigate the net structures around the boundary between normal nets and Trojan nets, and extract the features of the nets mistakenly identified to be normal nets or Trojan nets. Finally, based on the extracted features of the boundary nets, we again classify the nets in a given netlist into a set of normal nets and a set of Trojan nets. The experimental results demonstrate that our proposed method outperforms an existing machine-learning-based hardware-Trojan detection method in terms of its true positive rate.

  • Stochastic Discrete First-Order Algorithm for Feature Subset Selection

    Kota KUDO  Yuichi TAKANO  Ryo NOMURA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/04/13
      Vol:
    E103-D No:7
      Page(s):
    1693-1702

    This paper addresses the problem of selecting a significant subset of candidate features to use for multiple linear regression. Bertsimas et al. [5] recently proposed the discrete first-order (DFO) algorithm to efficiently find near-optimal solutions to this problem. However, this algorithm is unable to escape from locally optimal solutions. To resolve this, we propose a stochastic discrete first-order (SDFO) algorithm for feature subset selection. In this algorithm, random perturbations are added to a sequence of candidate solutions as a means to escape from locally optimal solutions, which broadens the range of discoverable solutions. Moreover, we derive the optimal step size in the gradient-descent direction to accelerate convergence of the algorithm. We also make effective use of the L2-regularization term to improve the predictive performance of a resultant subset regression model. The simulation results demonstrate that our algorithm substantially outperforms the original DFO algorithm. Our algorithm was superior in predictive performance to lasso and forward stepwise selection as well.

  • Effect of Fixational Eye Movement on Signal Processing of Retinal Photoreceptor: A Computational Study

    Keiichiro INAGAKI  Takayuki KANNON  Yoshimi KAMIYAMA  Shiro USUI  

     
    PAPER-Biological Engineering

      Pubricized:
    2020/04/01
      Vol:
    E103-D No:7
      Page(s):
    1753-1759

    The eyes are continuously fluctuating during fixation. These fluctuations are called fixational eye movements. Fixational eye movements consist of tremors, microsaccades, and ocular drifts. Fixational eye movements aid our vision by shaping spatial-temporal characteristics. Here, it is known that photoreceptors, the first input layer of the retinal network, have a spatially non-uniform cell alignment called the cone mosaic. The roles of fixational eye movements are being gradually uncovered; however, the effects of the cone mosaic are not considered. Here we constructed a large-scale visual system model to explore the effect of the cone mosaic on the visual signal processing associated with fixational eye movements. The visual system model consisted of a brainstem, eye optics, and photoreceptors. In the simulation, we focused on the roles of fixational eye movements on signal processing with sparse sampling by photoreceptors given their spatially non-uniform mosaic. To analyze quantitatively the effect of fixational eye movements, the capacity of information processing in the simulated photoreceptor responses was evaluated by information rate. We confirmed that the information rate by sparse sampling due to the cone mosaic was increased with fixational eye movements. We also confirmed that the increase of the information rate was derived from the increase of the responses for the edges of objects. These results suggest that visual information is already enhanced at the level of the photoreceptors by fixational eye movements.

  • Gate Array Using Low-Temperature Poly-Si Thin-Film Transistors

    Mutsumi KIMURA  Masashi INOUE  Tokiyoshi MATSUDA  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2020/01/27
      Vol:
    E103-C No:7
      Page(s):
    341-344

    We have designed gate arrays using low-temperature poly-Si thin-film transistors and confirmed the correct operations. Various kinds of logic gates are beforehand prepared, contact holes are later bored, and mutual wiring is formed between the logic gates on demand. A half adder, two-bit decoder, and flip flop are composed as examples. The static behaviors are evaluated, and it is confirmed that the correct waveforms are output. The dynamic behaviors are also evaluated, and it is concluded that the dynamic behaviors of the gate array are less deteriorated than that of the independent circuit.

  • Performance Analysis of Full Duplex MAC protocols for Wireless Local Area Networks with Hidden Node Collisions

    Kosuke SANADA  Kazuo MORI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2019/12/25
      Vol:
    E103-B No:7
      Page(s):
    804-814

    Full duplex (FD) communication can potentially double the throughput of a point-to-point link in wireless communication. Additionally, FD communication can mitigate the hidden node collision problem. The MAC protocols for FD communications are classified into two types; synchronous FD MAC and asynchronous one. Though the synchronous FD MAC mitigates hidden node collisions by using control frame, overhead duration for each data frame transmission may be a bottleneck for the networks. On the other hand, the asynchronous FD MAC mitigates the hidden node collisions by FD communication. However, it wastes more time due to transmission failure than synchronous FD MAC. Clarifying the effect of two major FD MAC types on networks requires a quantitative evaluation of the effectiveness of these protocols in networks with hidden node collisions. This paper proposes performance analysis of FD MAC protocols for wireless local area networks with hidden node collisions. Through the proposed analytical model, the saturated throughputs in FD WLANs with both asynchronous and synchronous FD MAC for any number of STAs and any payload size can be obtained.

  • A Semantic Similarity Supervised Autoencoder for Zero-Shot Learning

    Fengli SHEN  Zhe-Ming LU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/03/03
      Vol:
    E103-D No:6
      Page(s):
    1419-1422

    This Letter proposes a autoencoder model supervised by semantic similarity for zero-shot learning. With the help of semantic similarity vectors of seen and unseen classes and the classification branch, our experimental results on two datasets are 7.3% and 4% better than the state-of-the-art on conventional zero-shot learning in terms of the averaged top-1 accuracy.

  • Tensor Factor Analysis for Arbitrary Speaker Conversion

    Daisuke SAITO  Nobuaki MINEMATSU  Keikichi HIROSE  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/03/13
      Vol:
    E103-D No:6
      Page(s):
    1395-1405

    This paper describes a novel approach to flexible control of speaker characteristics using tensor representation of multiple Gaussian mixture models (GMM). In voice conversion studies, realization of conversion from/to an arbitrary speaker's voice is one of the important objectives. For this purpose, eigenvoice conversion (EVC) based on an eigenvoice GMM (EV-GMM) was proposed. In the EVC, a speaker space is constructed based on GMM supervectors which are high-dimensional vectors derived by concatenating the mean vectors of each of the speaker GMMs. In the speaker space, each speaker is represented by a small number of weight parameters of eigen-supervectors. In this paper, we revisit construction of the speaker space by introducing the tensor factor analysis of training data set. In our approach, each speaker is represented as a matrix of which the row and the column respectively correspond to the dimension of the mean vector and the Gaussian component. The speaker space is derived by the tensor factor analysis of the set of the matrices. Our approach can solve an inherent problem of supervector representation, and it improves the performance of voice conversion. In addition, in this paper, effects of speaker adaptive training before factorization are also investigated. Experimental results of one-to-many voice conversion demonstrate the effectiveness of the proposed approach.

  • Joint Trajectory and Power Design for Secure UAV-Enabled Multicasting

    Ke WANG  Wei HENG  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:6
      Page(s):
    860-864

    This letter studies the physical layer security of an unmanned aerial vehicle (UAV)-enabled multicasting system, where a UAV serves as a mobile transmitter to send a common confidential message to a group of legitimate users under the existence of multiple eavesdroppers. The worst situation in which each eavesdropper can wiretap all legitimate users is considered. We seek to maximize the average secrecy rate by jointly optimizing the UAV's transmit power and trajectory over a given flight period. The resulting optimization problem is nonconvex and intractable to solve. To circumvent the nonconvexity, we propose an iterative algorithm to approximate the solution based on the alternating optimization and successive convex approximation methods. Simulation results validate the convergence and effectiveness of our proposed algorithm.

  • Evaluation of Software Fault Prediction Models Considering Faultless Cases

    Yukasa MURAKAMI  Masateru TSUNODA  Koji TODA  

     
    PAPER

      Pubricized:
    2020/03/09
      Vol:
    E103-D No:6
      Page(s):
    1319-1327

    To enhance the prediction accuracy of the number of faults, many studies proposed various prediction models. The model is built using a dataset collected in past projects, and the number of faults is predicted using the model and the data of the current project. Datasets sometimes have many data points where the dependent variable, i.e., the number of faults is zero. When a multiple linear regression model is made using the dataset, the model may not be built properly. To avoid the problem, the Tobit model is considered to be effective when predicting software faults. The model assumes that the range of a dependent variable is limited and the model is built based on the assumption. Similar to the Tobit model, the Poisson regression model assumes there are many data points whose value is zero on the dependent variable. Also, log-transformation is sometimes applied to enhance the accuracy of the model. Additionally, ensemble methods are effective to enhance prediction accuracy of the models. We evaluated the prediction accuracy of the methods separately, when the number of faults is zero and not zero. In the experiment, our proposed ensemble method showed the highest accuracy, and Pred25 was 21% when the number of faults was not zero, and it was 45% when the number was zero.

1281-1300hit(16314hit)