The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

1481-1500hit(16314hit)

  • Adversarial Domain Adaptation Network for Semantic Role Classification

    Haitong YANG  Guangyou ZHOU  Tingting HE  Maoxi LI  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/09/02
      Vol:
    E102-D No:12
      Page(s):
    2587-2594

    In this paper, we study domain adaptation of semantic role classification. Most systems utilize the supervised method for semantic role classification. But, these methods often suffer severe performance drops on out-of-domain test data. The reason for the performance drops is that there are giant feature differences between source and target domain. This paper proposes a framework called Adversarial Domain Adaption Network (ADAN) to relieve domain adaption of semantic role classification. The idea behind our method is that the proposed framework can derive domain-invariant features via adversarial learning and narrow down the gap between source and target feature space. To evaluate our method, we conduct experiments on English portion in the CoNLL 2009 shared task. Experimental results show that our method can largely reduce the performance drop on out-of-domain test data.

  • Speeding Up Revocable Group Signature with Compact Revocation List Using Vector Commitments

    Yasuyuki SEITA  Toru NAKANISHI  

     
    PAPER-Cryptography

      Vol:
    E102-A No:12
      Page(s):
    1676-1687

    In ID-based user authentications, a privacy problem can occur, since the service provider (SP) can accumulate the user's access history from the user ID. As a solution to that problem, group signatures have been researched. One of important issues in the group signatures is the user revocation. Previously, an efficient revocable scheme with signing/verification of constant complexity was proposed by Libert et al. In this scheme, users are managed by a binary tree, and a list of data for revoked users, called a revocation list (RL), is used for revocation. However, the scheme suffers from the large RL. Recently, an extended scheme has been proposed by Sadiah and Nakanishi, where the RL size is reduced by compressing RL. On the other hand, there is a problem that some overhead occurs in the authentication as a price for reducing the size of RL. In this paper, we propose an extended scheme where the authentication is speeded up by reducing the number of Groth-Sahai (GS) proofs. Furthermore, we implemented it on a PC to show the effectiveness. The verification time is about 30% shorter than that of the previous scheme by Sadiah and Nakanishi.

  • Discrimination between Genuine and Cloned Gait Silhouette Videos via Autoencoder-Based Training Data Generation

    Yuki HIROSE  Kazuaki NAKAMURA  Naoko NITTA  Noboru BABAGUCHI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/09/06
      Vol:
    E102-D No:12
      Page(s):
    2535-2546

    Spoofing attacks are one of the biggest concerns for most biometric recognition systems. This will be also the case with silhouette-based gait recognition in the near future. So far, gait recognition has been fortunately out of the scope of spoofing attacks. However, it is becoming a real threat with the rapid growth and spread of deep neural network-based multimedia generation techniques, which will allow attackers to generate a fake video of gait silhouettes resembling a target person's walking motion. We refer to such computer-generated fake silhouettes as gait silhouette clones (GSCs). To deal with the future threat caused by GSCs, in this paper, we propose a supervised method for discriminating GSCs from genuine gait silhouettes (GGSs) that are observed from actual walking people. For training a good discriminator, it is important to collect training datasets of both GGSs and GSCs which do not differ from each other in any aspect other than genuineness. To this end, we propose to generate a training set of GSCs from GGSs by transforming them using multiple autoencoders. The generated GSCs are used together with their original GGSs for training the discriminator. In our experiments, the proposed method achieved the recognition accuracy of up to 94% for several test datasets, which demonstrates the effectiveness and the generality of the proposed method.

  • Empirical Study on Improvements to Software Engineering Competences Using FLOSS

    Neunghoe KIM  Jongwook JEONG  Mansoo HWANG  

     
    LETTER

      Pubricized:
    2019/09/24
      Vol:
    E102-D No:12
      Page(s):
    2433-2434

    Free/libre open source software (FLOSS) are being rapidly employed in several companies and organizations, because it can be modified and used for free. Hence, the use of FLOSS could contribute to its originally intended benefits and to the competence of its users. In this study, we analyzed the effect of using FLOSS on related competences. We investigated the change in the competences through an empirical study before and after the use of FLOSS among project participants. Consequently, it was confirmed that the competences of the participants improved after utilizing FLOSS.

  • Copy-on-Write with Adaptive Differential Logging for Persistent Memory

    Taeho HWANG  Youjip WON  

     
    PAPER-Software System

      Pubricized:
    2019/09/25
      Vol:
    E102-D No:12
      Page(s):
    2451-2460

    File systems based on persistent memory deploy Copy-on-Write (COW) or logging to guarantee data consistency. However, COW has a write amplification problem and logging has a double write problem. Both COW and logging increase write traffic on persistent memory. In this work, we present adaptive differential logging and zero-copy logging for persistent memory. Adaptive differential logging applies COW or logging selectively to each block. If the updated size of a block is smaller than or equal to half of the block size, we apply logging to the block. If the updated size of a block is larger than half of the block size, we apply COW to the block. Zero-copy logging treats an user buffer on persistent memory as a redo log. Zero-copy logging does not incur any additional data copy. We implement adaptive differential logging and zero-copy logging on both NOVA and PMFS file systems. Our measurement on real workloads shows that adaptive differential logging and zero-copy logging get 150.6% and 149.2% performance improvement over COW, respectively.

  • Hue Signature Auto Update System for Visual Similarity-Based Phishing Detection with Tolerance to Zero-Day Attack

    Shuichiro HARUTA  Hiromu ASAHINA  Fumitaka YAMAZAKI  Iwao SASASE  

     
    PAPER-Dependable Computing

      Pubricized:
    2019/09/04
      Vol:
    E102-D No:12
      Page(s):
    2461-2471

    Detecting phishing websites is imperative. Among several detection schemes, the promising ones are the visual similarity-based approaches. In those, targeted legitimate website's visual features referred to as signatures are stored in SDB (Signature Database) by the system administrator. They can only detect phishing websites whose signatures are highly similar to SDB's one. Thus, the system administrator has to register multiple signatures to detect various phishing websites and that cost is very high. This incurs the vulnerability of zero-day phishing attack. In order to address this issue, an auto signature update mechanism is needed. The naive way of auto updating SDB is expanding the scope of detection by adding detected phishing website's signature to SDB. However, the previous approaches are not suitable for auto updating since their similarity can be highly different among targeted legitimate website and subspecies of phishing website targeting that legitimate website. Furthermore, the previous signatures can be easily manipulated by attackers. In order to overcome the problems mentioned above, in this paper, we propose a hue signature auto update system for visual similarity-based phishing detection with tolerance to zero-day attack. The phishing websites targeting certain legitimate website tend to use the targeted website's theme color to deceive users. In other words, the users can easily distinguish phishing website if it has highly different hue information from targeted legitimate one (e.g. red colored Facebook is suspicious). Thus, the hue signature has a common feature among the targeted legitimate website and subspecies of phishing websites, and it is difficult for attackers to change it. Based on this notion, we argue that the hue signature fulfills the requirements about auto updating SDB and robustness for attackers' manipulating. This commonness can effectively expand the scope of detection when auto updating is applied to the hue signature. By the computer simulation with a real dataset, we demonstrate that our system achieves high detection performance compared with the previous scheme.

  • Attentive Sequences Recurrent Network for Social Relation Recognition from Video Open Access

    Jinna LV  Bin WU  Yunlei ZHANG  Yunpeng XIAO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/09/02
      Vol:
    E102-D No:12
      Page(s):
    2568-2576

    Recently, social relation analysis receives an increasing amount of attention from text to image data. However, social relation analysis from video is an important problem, which is lacking in the current literature. There are still some challenges: 1) it is hard to learn a satisfactory mapping function from low-level pixels to high-level social relation space; 2) how to efficiently select the most relevant information from noisy and unsegmented video. In this paper, we present an Attentive Sequences Recurrent Network model, called ASRN, to deal with the above challenges. First, in order to explore multiple clues, we design a Multiple Feature Attention (MFA) mechanism to fuse multiple visual features (i.e. image, motion, body, and face). Through this manner, we can generate an appropriate mapping function from low-level video pixels to high-level social relation space. Second, we design a sequence recurrent network based on Global and Local Attention (GLA) mechanism. Specially, an attention mechanism is used in GLA to integrate global feature with local sequence feature to select more relevant sequences for the recognition task. Therefore, the GLA module can better deal with noisy and unsegmented video. At last, extensive experiments on the SRIV dataset demonstrate the performance of our ASRN model.

  • Channel and Frequency Attention Module for Diverse Animal Sound Classification

    Kyungdeuk KO  Jaihyun PARK  David K. HAN  Hanseok KO  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/17
      Vol:
    E102-D No:12
      Page(s):
    2615-2618

    In-class species classification based on animal sounds is a highly challenging task even with the latest deep learning technique applied. The difficulty of distinguishing the species is further compounded when the number of species is large within the same class. This paper presents a novel approach for fine categorization of animal species based on their sounds by using pre-trained CNNs and a new self-attention module well-suited for acoustic signals The proposed method is shown effective as it achieves average species accuracy of 98.37% and the minimum species accuracy of 94.38%, the highest among the competing baselines, which include CNN's without self-attention and CNN's with CBAM, FAM, and CFAM but without pre-training.

  • Density Optimization for Analog Layout Based on Transistor-Array

    Chao GENG  Bo LIU  Shigetoshi NAKATAKE  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1720-1730

    In integrated circuit design of advanced technology nodes, layout density uniformity significantly influences the manufacturability due to the CMP variability. In analog design, especially, designers are suffering from passing the density checking since there are few useful tools. To tackle this issue, we focus a transistor-array(TA)-style analog layout, and propose a density optimization algorithm consistent with complicated design rules. Based on TA-style, we introduce a density-aware layout format to explicitly control the layout pattern density, and provide the mathematical optimization approach. Hence, a design flow incorporating our density optimization can drastically reduce the design time with fewer iterations. In a design case of an OPAMP layout in a 65nm CMOS process, the result demonstrates that the proposed approach achieves more than 48× speed-up compared with conventional manual layout, meanwhile it shows a good circuit performance in the post-layout simulation.

  • Selective Use of Stitch-Induced Via for V0 Mask Reduction: Standard Cell Design and Placement Optimization

    Daijoon HYUN  Younggwang JUNG  Youngsoo SHIN  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1711-1719

    Multiple patterning lithography allows fine patterns beyond lithography limit, but it suffers from a large process cost. In this paper, we address a method to reduce the number of V0 masks; it consists of two sub-problems. First, stitch-induced via (SIV) is introduced to reduce the number of V0 masks. It involves the redesign of standard cells to replace some vias in V0 layer with SIVs, such that the remaining vias can be assigned to the reduced masks. Since SIV formation requires metal stitches in different masks, SIV replacement and metal mask assignment should be solved simultaneously. This sub-problem is formulated as integer linear programming (ILP). In the second sub-problem, inter-row via conflict aware detailed placement is addressed. Single row placement optimization is performed for each row to remove metal and inter-row via conflicts, while minimizing cell displacements. Since it is time consuming to consider many cell operations at once, we apply a few operations iteratively, where different operations are applied to each iteration and to each cell depending on whether the cell has a conflict in the previous iteration. Remaining conflicts are then removed by mapping conflict cells to white spaces. To this end, we minimize the number of cells to move and maximize the number of large white spaces before mapping. Experimental results demonstrate that the cell placement with two V0 masks is completed by proposed methods, with 7 times speedup and 21% reduction in total cell displacement, compared to conventional detailed placement.

  • Image Regularization with Total Variation and Optimized Morphological Gradient Priors

    Shoya OOHARA  Mitsuji MUNEYASU  Soh YOSHIDA  Makoto NAKASHIZUKA  

     
    LETTER-Image

      Vol:
    E102-A No:12
      Page(s):
    1920-1924

    For image restoration, an image prior that is obtained from the morphological gradient has been proposed. In the field of mathematical morphology, the optimization of the structuring element (SE) used for this morphological gradient using a genetic algorithm (GA) has also been proposed. In this paper, we introduce a new image prior that is the sum of the morphological gradients and total variation for an image restoration problem to improve the restoration accuracy. The proposed image prior makes it possible to almost match the fitness to a quantitative evaluation such as the mean square error. It also solves the problem of the artifact due to the unsuitability of the SE for the image. An experiment shows the effectiveness of the proposed image restoration method.

  • On the Performance Analysis of SPHINCS+ Verification

    Tae Gu KANG  Jinwoo LEE  Junyeng KIM  Dae Hyun YUM  

     
    LETTER-Information Network

      Pubricized:
    2019/09/20
      Vol:
    E102-D No:12
      Page(s):
    2603-2606

    SPHINCS+, an updated version of SPHINCS, is a post-quantum hash-based signature scheme submitted to the NIST post-quantum cryptography standardization project. To evaluate its performance, SPHINCS+ gives the theoretical number of function calls and the actual runtime of a reference implementation. We show that the theoretical number of function calls for SPHINCS+ verification is inconsistent with the runtime and then present the correct number of function calls.

  • Shifted Coded Slotted ALOHA: A Graph-Based Random Access with Shift Operation

    Tomokazu EMOTO  Takayuki NOZAKI  

     
    PAPER-Erasure Correction

      Vol:
    E102-A No:12
      Page(s):
    1611-1621

    A random access scheme is a fundamental scenario in which the users transmit through a shared channel and cannot coordinate with each other. Recently, successive interference cancellation (SIC) is introduced into the random access scheme. The SIC decodes the transmitted packets using collided packets. The coded slotted ALOHA (CSA) is a random access scheme using the SIC. The CSA encodes each packet by a local code prior to transmission. It is known that the CSA achieves excellent throughput. On the other hand, it is reported that shift operation improves the decoding performance for packet-oriented erasure correcting coding systems. In this paper, we propose a protocol which applies the shift operation to the CSA. Numerical simulations show that the proposed protocol achieves better throughput and packet loss rate than the CSA. Moreover, we analyze the asymptotic behavior of the throughput and the decoding erasure rate for the proposed protocol by the density evolution.

  • Dither NN: Hardware/Algorithm Co-Design for Accurate Quantized Neural Networks

    Kota ANDO  Kodai UEYOSHI  Yuka OBA  Kazutoshi HIROSE  Ryota UEMATSU  Takumi KUDO  Masayuki IKEBE  Tetsuya ASAI  Shinya TAKAMAEDA-YAMAZAKI  Masato MOTOMURA  

     
    PAPER-Computer System

      Pubricized:
    2019/07/22
      Vol:
    E102-D No:12
      Page(s):
    2341-2353

    Deep neural network (NN) has been widely accepted for enabling various AI applications, however, the limitation of computational and memory resources is a major problem on mobile devices. Quantized NN with a reduced bit precision is an effective solution, which relaxes the resource requirements, but the accuracy degradation due to its numerical approximation is another problem. We propose a novel quantized NN model employing the “dithering” technique to improve the accuracy with the minimal additional hardware requirement at the view point of the hardware-algorithm co-designing. Dithering distributes the quantization error occurring at each pixel (neuron) spatially so that the total information loss of the plane would be minimized. The experiment we conducted using the software-based accuracy evaluation and FPGA-based hardware resource estimation proved the effectiveness and efficiency of the concept of an NN model with dithering.

  • Simulation Study of Low-Latency Network Model with Orchestrator in MEC Open Access

    Krittin INTHARAWIJITR  Katsuyoshi IIDA  Hiroyuki KOGA  Katsunori YAMAOKA  

     
    PAPER-Network

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2139-2150

    Most of latency-sensitive mobile applications depend on computational resources provided by a cloud computing service. The problem of relying on cloud computing is that, sometimes, the physical locations of cloud servers are distant from mobile users and the communication latency is long. As a result, the concept of distributed cloud service, called mobile edge computing (MEC), is being introduced in the 5G network. However, MEC can reduce only the communication latency. The computing latency in MEC must also be considered to satisfy the required total latency of services. In this research, we study the impact of both latencies in MEC architecture with regard to latency-sensitive services. We also consider a centralized model, in which we use a controller to manage flows between users and mobile edge resources to analyze MEC in a practical architecture. Simulations show that the interval and controller latency trigger some blocking and error in the system. However, the permissive system which relaxes latency constraints and chooses an edge server by the lowest total latency can improve the system performance impressively.

  • Cauchy Aperture and Perfect Reconstruction Filters for Extending Depth-of-Field from Focal Stack Open Access

    Akira KUBOTA  Kazuya KODAMA  Asami ITO  

     
    PAPER

      Pubricized:
    2019/08/16
      Vol:
    E102-D No:11
      Page(s):
    2093-2100

    A pupil function of aperture in image capturing systems is theoretically derived such that one can perfectly reconstruct all-in-focus image through linear filtering of the focal stack. The perfect reconstruction filters are also designed based on the derived pupil function. The designed filters are space-invariant; hence the presented method does not require region segmentation. Simulation results using synthetic scenes shows effectiveness of the derived pupil function and the filters.

  • Parameter Estimation of Fractional Bandlimited LFM Signals Based on Orthogonal Matching Pursuit Open Access

    Xiaomin LI  Huali WANG  Zhangkai LUO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1448-1456

    Parameter estimation theorems for LFM signals have been developed due to the advantages of fractional Fourier transform (FrFT). The traditional estimation methods in the fractional Fourier domain (FrFD) are almost based on two-dimensional search which have the contradiction between estimation performance and complexity. In order to solve this problem, we introduce the orthogonal matching pursuit (OMP) into the FrFD, propose a modified optimization method to estimate initial frequency and final frequency of fractional bandlimited LFM signals. In this algorithm, the differentiation fractional spectrum which is used to form observation matrix in OMP is derived from the spectrum analytical formulations of the LFM signal, and then, based on that the LFM signal has approximate rectangular spectrum in the FrFD and the correlation between the LFM signal and observation matrix yields a maximal value at the edge of the spectrum (see Sect.3.3 for details), the edge spectrum information can be extracted by OMP. Finally, the estimations of initial frequency and final frequency are obtained through multiplying the edge information by the sampling frequency resolution. The proposed method avoids reconstruction and the traditional peak-searching procedure, and the iterations are needed only twice. Thus, the computational complexity is much lower than that of the existing methods. Meanwhile, Since the vectors at the initial frequency and final frequency points both have larger modulus, so that the estimations are closer to the actual values, better normalized root mean squared error (NRMSE) performance can be achieved. Both theoretical analysis and simulation results demonstrate that the proposed algorithm bears a relatively low complexity and its estimation precision is higher than search-based and reconstruction-based algorithms.

  • Thresholdless Electro-Optical Property in Quasi Homogeneous and Homeotropic Liquid Crystal Cells Using Weak Anchoring Surfaces Open Access

    Rumiko YAMAGUCHI  

     
    BRIEF PAPER

      Vol:
    E102-C No:11
      Page(s):
    810-812

    Liquid crystal director distributions between strong and weak polar anchoring surfaces in hybrid aligned cells are numerically analyzed. When the anchoring is a critical one, homogeneously or homeotropicly liquid crystal alignment can be obtained. Such cells have no threshold voltage and a driving voltage can be reduced less than 0.5 volt.

  • Mechanical Stability and Self-Recovery Property of Liquid Crystal Gel Films with Hydrogen-Bonding Interaction

    Yosei SHIBATA  Ryosuke SAITO  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E102-C No:11
      Page(s):
    813-817

    In this study, we examined the mechanical durability and self-recovery characterization of liquid crystal gel films with lysine-based gelator. The results indicated that the structural destruction in liquid crystal gel films is attributed to dissociation among network structure. The cracked LC gel films can be recovered by formation of sol-sate films.

  • An Effective Track Width with a 2D Modulation Code in Two-Dimensional Magnetic Recording (TDMR) Systems Open Access

    Kotchakorn PITUSO  Chanon WARISARN  Damrongsak TONGSOMPORN  

     
    PAPER-Storage Technology

      Pubricized:
    2019/08/05
      Vol:
    E102-C No:11
      Page(s):
    839-844

    When the track density of two-dimensional magnetic recording (TDMR) systems is increased, intertrack interference (ITI) inevitably grows, resulting in the extreme degradation of an overall system performance. In this work, we present coding, writing, and reading techniques which allow TDMR systems with multi-readers to overcome severe ITI. A rate-5/6 two-dimensional (2D) modulation code is adopted to protect middle-track data from ITI based on cross-track data dependence. Since the rate-5/6 2D modulation code greatly improves the reliability of the middle-track, there is a bit-error rate gap between middle-track and sidetracks. Therefore, we propose the different track width writing technique to optimize the reliability of all three data tracks. In addition, we also evaluate the TDMR system performance using an user areal density capability (UADC) as a main key parameter. Here, an areal density capability (ADC) can be measured by finding the bit-error rate of the system with sweeping track and linear densities. The UADC is then obtained by removing redundancy from the ADC. Simulation results show that a system with our proposed techniques gains the UADC of about 4.66% over the conventional TDMR systems.

1481-1500hit(16314hit)