The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

1321-1340hit(16314hit)

  • Ridge-Adding Homotopy Approach for l1-norm Minimization Problems

    Haoran LI  Binyu WANG  Jisheng DAI  Tianhong PAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/03/10
      Vol:
    E103-D No:6
      Page(s):
    1380-1387

    Homotopy algorithm provides a very powerful approach to select the best regularization term for the l1-norm minimization problem, but it is lack of provision for handling singularities. The singularity problem might be frequently encountered in practical implementations if the measurement matrix contains duplicate columns, approximate columns or columns with linear dependent in kernel space. The existing method for handling Homotopy singularities introduces a high-dimensional random ridge term into the measurement matrix, which has at least two shortcomings: 1) it is very difficult to choose a proper ridge term that applies to several different measurement matrices; and 2) the high-dimensional ridge term may accumulatively degrade the recovery performance for large-scale applications. To get around these shortcomings, a modified ridge-adding method is proposed to deal with the singularity problem, which introduces a low-dimensional random ridge vector into the l1-norm minimization problem directly. Our method provides a much simpler implementation, and it can alleviate the degradation caused by the ridge term because the dimension of ridge term in the proposed method is much smaller than the original one. Moreover, the proposed method can be further extended to handle the SVMpath initialization singularities. Theoretical analysis and experimental results validate the performance of the proposed method.

  • Interactive Goal Model Construction Based on a Flow of Questions

    Hiroyuki NAKAGAWA  Hironori SHIMADA  Tatsuhiro TSUCHIYA  

     
    PAPER

      Pubricized:
    2020/03/06
      Vol:
    E103-D No:6
      Page(s):
    1309-1318

    Goal modeling is a method that describes requirements structurally. Goal modeling mainly consists of two tasks: extraction of goals and organization of the extracted goals. Generally, the process of the goal modeling requires intensive manual intervention and higher modeling skills than the process of the usual requirements description. In order to mitigate this problem, we propose a method that provides systematic supports for constructing goal models. In the method, the requirement analyst answers questions and a goal model is semi-automatically constructed based on the answers made. We develop a prototype tool that implements the proposed method and apply it to two systems. The results demonstrate the feasibility of the method.

  • Voice Conversion for Improving Perceived Likability of Uttered Speech

    Shinya HORIIKE  Masanori MORISE  

     
    LETTER-Speech and Hearing

      Pubricized:
    2020/01/23
      Vol:
    E103-D No:5
      Page(s):
    1199-1202

    To improve the likability of speech, we propose a voice conversion algorithm by controlling the fundamental frequency (F0) and the spectral envelope and carry out a subjective evaluation. The subjects can manipulate these two speech parameters. From the result, the subjects preferred speech with a parameter related to higher brightness.

  • End-to-End Deep ROI Image Compression

    Hiroaki AKUTSU  Takahiro NARUKO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/01/24
      Vol:
    E103-D No:5
      Page(s):
    1031-1038

    In this paper, we present the effectiveness of image compression based on a convolutional auto encoder (CAE) with region of interest (ROI) for quality control. We propose a method that adapts image quality for prioritized parts and non-prioritized parts for CAE-based compression. The proposed method uses annotation information for the distortion weights of the MS-SSIM-based loss function. We show experimental results using a road damage image dataset that is used to check damaged parts and an image dataset with segmentation data (ADE20K). The experimental results reveals that the proposed weighted loss function with CAE-based compression from F. Mentzer et al. learns some characteristics and preferred bit allocations of the prioritized parts by end-to-end training. In the case of using road damage image dataset, our method reduces bpp by 31% compared to the original method while meeting quality requirements that an average weighted MS-SSIM for the road damaged parts be larger than 0.97 and an average weighted MS-SSIM for the other parts be larger than 0.95.

  • A Novel Technique to Suppress Multiple-Triggering Effect in Typical DTSCRs under ESD Stress Open Access

    Lizhong ZHANG  Yuan WANG  Yandong HE  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2019/11/29
      Vol:
    E103-C No:5
      Page(s):
    274-278

    This work reports a new technique to suppress the undesirable multiple-triggering effect in the typical diode triggered silicon controlled rectifier (DTSCR), which is frequently used as an ESD protection element in the advanced CMOS technologies. The technique is featured by inserting additional N-Well areas under the N+ region of intrinsic SCR, which helps to improve the substrate resistance. As a consequence, the delay of intrinsic SCR is reduced as the required triggering current is largely decreased and multiple-triggering related higher trigger voltage is removed. The novel DTSCR structures can alter the stacked diodes to achieve the precise trigger voltage to meet different ESD protection requirements. All explored DTSCR structures are fabricated in a 65-nm CMOS process. Transmission-line-pulsing (TLP) and Very-Fast-Transmission-line-pulsing (VF-TLP) test systems are adopted to confirm the validity of this technique and the test results accord well with our analysis.

  • Composition Proposal Generation for Manga Creation Support

    Hironori ITO  Yasuhito ASANO  

     
    PAPER

      Pubricized:
    2019/12/27
      Vol:
    E103-D No:5
      Page(s):
    949-957

    In recent years, cognition and use of manga pervade, and people who use manga for various purposes such as entertainment, study, marketing are increasing more and more. However, when people who do not specialize in it create it for these purposes, they can write plots expressing what they want to convey but the technique of the composition which arranges elements in manga such as characters or balloons corresponding to the plot create obstacles to using its merits for comprehensibility based on high flexibility of its expression. Therefore, we consider that support of this composition technique is necessary for amateurs to use manga while taking advantage of its benefits. We propose a method of generating composition proposal to support manga creation by amateurs. For the method, we also define new manga metadata model which summarize and extend metadata models by earlier studies. It represents the compostion and the plot in manga. We apply a neural machine translation mechanism for learing the relation between the composition and the plot. It considers that the plot annotation is the source of the composition annotation that is the target, and learns from the annotation dataset based on the metadata model. We conducted experiments to evaluate how the composition proposal generated by our method helps amateur manga creation, and demonstrated that it is useful.

  • Development of MOOC Service Framework for Life Long Learning: A Case Study of Thai MOOC

    Sila CHUNWIJITRA  Phondanai KHANTI  Supphachoke SUNTIWICHAYA  Kamthorn KRAIRAKSA  Pornchai TUMMARATTANANONT  Marut BURANARACH  Chai WUTIWIWATCHAI  

     
    PAPER-Educational Technology

      Pubricized:
    2020/02/18
      Vol:
    E103-D No:5
      Page(s):
    1078-1087

    Massive open online course (MOOC) is an online course aimed at unlimited participation and open access via the web. Although there are many MOOC providers, they typically focus on the online course providing and typically do not link with traditional education and business sector requirements. This paper presents a MOOC service framework that focuses on adopting MOOC to provide additional services to support students in traditional education and to provide credit bank consisting of student academic credentials for business sector demand. Particularly, it extends typical MOOC to support academic/ credential record and transcript issuance. The MOOC service framework consists of five layers: authentication, resources, learning, assessment and credential layers. We discuss the adoption of the framework in Thai MOOC, the national MOOC system for Thai universities. Several main issues related to the framework adoption are discussed, including the service strategy and model as well as infrastructure design for large-scale MOOC service.

  • Low Complexity Soft Input Decoding in an Iterative Linear Receiver for Overloaded MIMO Open Access

    Satoshi DENNO  Tsubasa INOUE  Yuta KAWAGUCHI  Takuya FUJIWARA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/11/06
      Vol:
    E103-B No:5
      Page(s):
    600-608

    This paper proposes a low complexity soft input decoding in an iterative linear receiver for overloaded MIMO. The proposed soft input decoding applies two types of lattice reduction-aided linear filters to estimate log-likelihood ratio (LLR) in order to reduce the computational complexity. A lattice reduction-aided linear with whitening filter is introduced for the LLR estimation in the proposed decoding. The equivalent noise caused by the linear filter is mitigated with the decoder output stream and the LLR is re-estimated after the equivalent noise mitigation. Furthermore, LLR clipping is introduced in the proposed decoding to avoid the performance degradation due to the incorrect LLRs. The performance of the proposed decoding is evaluated by computer simulation. The proposed decoding achieves about 2dB better BER performance than soft decoding with the exhaustive search algorithm, so called the MLD, at the BER of 10-4, even though the complexity of the proposed decoding is 1/10 as small as that of soft decoding with the exhaustive search.

  • Design and Implementation of Sensor-Embedded Chair for Continuous Sitting Posture Recognition

    Teruhiro MIZUMOTO  Yasuhiro OTODA  Chihiro NAKAJIMA  Mitsuhiro KOHANA  Motohiro UENISHI  Keiichi YASUMOTO  Yutaka ARAKAWA  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2020/02/05
      Vol:
    E103-D No:5
      Page(s):
    1067-1077

    In this paper, we design and develop a sensor-embedded office chair that can measure the posture of the office worker continuously without disturbing their job. In our system, eight accelerometers, that are attached at the back side of the fabric surface of the chair, are used for recognizing the posture. We propose three sitting posture recognition algorithms by considering the initial position of the chair and the difference of physique. Through the experiment with 28 participants, we confirm that our proposed chair can recognize the sitting posture by 75.4% (algorithm 1), 83.7% (algorithm 2), and 85.6% (algorithm 3) respectively.

  • Security Evaluation of Negative Iris Recognition

    Osama OUDA  Slim CHAOUI  Norimichi TSUMURA  

     
    PAPER-Biological Engineering

      Pubricized:
    2020/01/29
      Vol:
    E103-D No:5
      Page(s):
    1144-1152

    Biometric template protection techniques have been proposed to address security and privacy issues inherent to biometric-based authentication systems. However, it has been shown that the robustness of most of such techniques against reversibility and linkability attacks are overestimated. Thus, a thorough security analysis of recently proposed template protection schemes has to be carried out. Negative iris recognition is an interesting iris template protection scheme based on the concept of negative databases. In this paper, we present a comprehensive security analysis of this scheme in order to validate its practical usefulness. Although the authors of negative iris recognition claim that their scheme possesses both irreversibility and unlinkability, we demonstrate that more than 75% of the original iris-code bits can be recovered using a single protected template. Moreover, we show that the negative iris recognition scheme is vulnerable to attacks via record multiplicity where an adversary can combine several transformed templates to recover more proportion of the original iris-code. Finally, we demonstrate that the scheme does not possess unlinkability. The experimental results, on the CASIA-IrisV3 Interval public database, support our theory and confirm that the negative iris recognition scheme is susceptible to reversibility, linkability, and record multiplicity attacks.

  • Continuous Noise Masking Based Vocoder for Statistical Parametric Speech Synthesis

    Mohammed Salah AL-RADHI  Tamás Gábor CSAPÓ  Géza NÉMETH  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/02/10
      Vol:
    E103-D No:5
      Page(s):
    1099-1107

    In this article, we propose a method called “continuous noise masking (cNM)” that allows eliminating residual buzziness in a continuous vocoder, i.e. of which all parameters are continuous and offers a simple and flexible speech analysis and synthesis system. Traditional parametric vocoders generally show a perceptible deterioration in the quality of the synthesized speech due to different processing algorithms. Furthermore, an inaccurate noise resynthesis (e.g. in breathiness or hoarseness) is also considered to be one of the main underlying causes of performance degradation, leading to noisy transients and temporal discontinuity in the synthesized speech. To overcome these issues, a new cNM is developed based on the phase distortion deviation in order to reduce the perceptual effect of the residual noise, allowing a proper reconstruction of noise characteristics, and model better the creaky voice segments that may happen in natural speech. To this end, the cNM is designed to keep only voice components under a condition of the cNM threshold while discarding others. We evaluate the proposed approach and compare with state-of-the-art vocoders using objective and subjective listening tests. Experimental results show that the proposed method can reduce the effect of residual noise and can reach the quality of other sophisticated approaches like STRAIGHT and log domain pulse model (PML).

  • Experimental Performance Study of STBC-Based Cooperative and Diversity Relaying

    Makoto MIYAGOSHI  Hidekazu MURATA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:5
      Page(s):
    798-801

    The packet error rate (PER) performance of multi-hop STBC based cooperative and diversity relaying systems are studied. These systems consist of a source, a destination, and two relay stations in each hop. From in-lab experiments, it is confirmed that the cooperative relaying system has better PER performance than the diversity relaying system with highly correlated channels.

  • 3D-HEVC Virtual View Synthesis Based on a Reconfigurable Architecture

    Lin JIANG  Xin WU  Yun ZHU  Yu WANG  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    618-626

    For high definition (HD) videos, the 3D-High Efficiency Video Coding (3D-HEVC) reference algorithm incurs dramatically highly computation loads. Therefore, with the demands for the real-time processing of HD video, a hardware implementation is necessary. In this paper, a reconfigurable architecture is proposed that can support both median filtering preprocessing and mean filtering preprocessing to satisfy different scene depth maps. The architecture sends different instructions to the corresponding processing elements according to different scenarios. Mean filter is used to process near-range images, and median filter is used to process long-range images. The simulation results show that the designed architecture achieves an averaged PSNR of 34.55dB for the tested images. The hardware design for the proposed virtual view synthesis system operates at a maximum clock frequency of 160MHz on the BEE4 platform which is equipped with four Virtex-6 FF1759 LX550T Field-Programmable Gate Array (FPGA) for outputting 720p (1024×768) video at 124fps.

  • Measurement of Fatigue Based on Changes in Eye Movement during Gaze

    Yuki KUROSAWA  Shinya MOCHIDUKI  Yuko HOSHINO  Mitsuho YAMADA  

     
    LETTER-Multimedia Pattern Processing

      Pubricized:
    2020/02/20
      Vol:
    E103-D No:5
      Page(s):
    1203-1207

    We measured eye movements at gaze points while subjects performed calculation tasks and examined the relationship between the eye movements and fatigue and/or internal state of a subject by tasks. It was suggested that fatigue and/or internal state of a subject affected eye movements at gaze points and that we could measure them using eye movements at gaze points in real time.

  • Energy Efficiency Optimization for Secure SWIPT System

    Chao MENG  Gang WANG  Bingjian YAN  Yongmei LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/10/29
      Vol:
    E103-B No:5
      Page(s):
    582-590

    This paper investigates the secrecy energy efficiency maximization (SEEM) problem in a simultaneous wireless information and power transfer (SWIPT) system, wherein a legitimate user (LU) exploits the power splitting (PS) scheme for simultaneous information decoding (ID) and energy harvesting (EH). To prevent interference from eavesdroppers on the LU, artificial noise (AN) is incorporated into the confidential signal at the transmitter. We maximize the secrecy energy efficiency (SEE) by joining the power of the confidential signal, the AN power, and the PS ratio, while taking into account the minimum secrecy rate requirement of the LU, the required minimum harvested energy, the allowed maximum radio frequency transmission power, and the PS ratio. The formulated SEEM problem involves nonconvex fractional programming and is generally intractable. Our solution is Lagrangian relaxation method than can transform the original problem into a two-layer optimization problem. The outer layer problem is a single variable optimization problem with a Lagrange multiplier, which can be solved easily. Meanwhile, the inner layer one is fractional programming, which can be transformed into a subtractive form solved using the Dinkelbach method. A closed-form solution is derived for the power of the confidential signal. Simulation results verify the efficiency of the proposed SEEM algorithm and prove that AN-aided design is an effective method for improving system SEE.

  • Patient-Specific ECG Classification with Integrated Long Short-Term Memory and Convolutional Neural Networks

    Jiaquan WU  Feiteng LI  Zhijian CHEN  Xiaoyan XIANG  Yu PU  

     
    PAPER-Biological Engineering

      Pubricized:
    2020/02/13
      Vol:
    E103-D No:5
      Page(s):
    1153-1163

    This paper presents an automated patient-specific ECG classification algorithm, which integrates long short-term memory (LSTM) and convolutional neural networks (CNN). While LSTM extracts the temporal features, such as the heart rate variance (HRV) and beat-to-beat correlation from sequential heartbeats, CNN captures detailed morphological characteristics of the current heartbeat. To further improve the classification performance, adaptive segmentation and re-sampling are applied to align the heartbeats of different patients with various heart rates. In addition, a novel clustering method is proposed to identify the most representative patterns from the common training data. Evaluated on the MIT-BIH arrhythmia database, our algorithm shows the superior accuracy for both ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB) recognition. In particular, the sensitivity and positive predictive rate for SVEB increase by more than 8.2% and 8.8%, respectively, compared with the prior works. Since our patient-specific classification does not require manual feature extraction, it is potentially applicable to embedded devices for automatic and accurate arrhythmia monitoring.

  • Massive MIMO Antenna Arrangement Considering Spatial Efficiency and Correlation between Antennas in Mobile Communications

    Kiyoaki ITOI  Masanao SASAKI  Hiroaki NAKABAYASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    570-581

    This paper presents an algorithm to arrange a large number of antenna elements in the limited space of massive MIMO base station antenna without degrading the communication quality under a street-cell line-of-sight environment in mobile communications. The proposed algorithm works by using mathematical optimization in which the objective function is the correlation coefficient between the channel responses of two elements of the base station antenna, according to an algorithm constructed based on the results obtained through basic examinations of the characteristics of the correlation coefficient between channel responses. The channel responses are computed by using the propagation path information obtained by ray-tracing. The arrangements output by the proposed algorithm are mainly evaluated by channel capacity comparison with uniformly spaced arrangements on the vertical plane in single user and multiuser environments. The evaluation results of these arrangements in downlink demonstrate the superiority of the arrangements generated by the proposed algorithm, especially in term of robustness against an increase in the number of users.

  • Successive Interference Cancellation of ICA-Aided SDMA for GFSK Signaling in BLE Systems

    Masahiro TAKIGAWA  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    495-503

    This paper proposes a successive interference cancellation (SIC) of independent component analysis (ICA) aided spatial division multiple access (SDMA) for Gaussian filtered frequency shift keying (GFSK) in Bluetooth low energy (BLE) systems. The typical SDMA scheme requires estimations of channel state information (CSI) using orthogonal pilot sequences. However, the orthogonal pilot is not embedded in the BLE packet. This fact motivates us to add ICA detector into BLE systems. In this paper, focusing on the covariance matrix of ICA outputs, SIC can be applied with Cholesky decomposition. Then, in order to address the phase ambiguity problems created by the ICA process, we propose a differential detection scheme based on the MAP algorithm. In practical scenarios, it is subject to carrier frequency offset (CFO) as well as symbol timing offset (STO) induced by the hardware impairments present in the BLE peripherals. The packet error rate (PER) performance is evaluated by computer simulations when BLE peripherals simultaneously communicate in the presence of CFO and STO.

  • Development and Evaluation of Superconducting Nanowire Single-Photon Detectors for 900-1100 nm Photon Detection

    Fumihiro CHINA  Shigehito MIKI  Masahiro YABUNO  Taro YAMASHITA  Hirotaka TERAI  

     
    BRIEF PAPER-Superconducting Electronics

      Vol:
    E103-C No:5
      Page(s):
    212-215

    Superconducting nanowire single-photon detectors(SSPDs or SNSPDs) can detect single photons in a wide spectrum range from ultraviolet to mid-infrared wavelengths. We developed SSPDs for the light wavelength of 900-1100 nm, where it is difficult to achieve high detection efficiency by either Si or InGaAs avalanche photodiodes. We designed and fabricated the SSPD with non-periodic dielectric multilayers (DMLs) composed of SiO2 and TiO2 to enhance the optical absorptance in the wavelength range of 900-1100 nm. We measured the detection efficiency (DE) in the wavelength range of 800-1360 nm using a supercontinuum light source and found that the wavelength dependence of DE was in good agreement with the simulated spectrum of the optical absorptance of the nanowire device on the designed DML. The highest system DE was 81.0% for the wavelength of 980 nm.

  • Gradient-Enhanced Softmax for Face Recognition

    Linjun SUN  Weijun LI  Xin NING  Liping ZHANG  Xiaoli DONG  Wei HE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/02/07
      Vol:
    E103-D No:5
      Page(s):
    1185-1189

    This letter proposes a gradient-enhanced softmax supervisor for face recognition (FR) based on a deep convolutional neural network (DCNN). The proposed supervisor conducts the constant-normalized cosine to obtain the score for each class using a combination of the intra-class score and the soft maximum of the inter-class scores as the objective function. This mitigates the vanishing gradient problem in the conventional softmax classifier. The experiments on the public Labeled Faces in the Wild (LFW) database denote that the proposed supervisor achieves better results when compared with those achieved using the current state-of-the-art softmax-based approaches for FR.

1321-1340hit(16314hit)