The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

1341-1360hit(16314hit)

  • Multiple Regular Expression Pattern Monitoring over Probabilistic Event Streams

    Kento SUGIURA  Yoshiharu ISHIKAWA  

     
    PAPER

      Pubricized:
    2020/02/03
      Vol:
    E103-D No:5
      Page(s):
    982-991

    As smartphones and IoT devices become widespread, probabilistic event streams, which are continuous analysis results of sensing data, have received a lot of attention. One of the applications of probabilistic event streams is monitoring of time series events based on regular expressions. That is, we describe a monitoring query such as “Has the tracked object moved from RoomA to RoomB in the past 30 minutes?” by using a regular expression, and then check whether corresponding events occur in a probabilistic event stream with a sliding window. Although we proposed the fundamental monitoring method of time series events in our previous work, three problems remain: 1) it is based on an unusual assumption about slide size of a sliding window, 2) the grammar of pattern queries did not include “negation”, and 3) it was not optimized for multiple monitoring queries. In this paper, we propose several techniques to solve the above problems. First, we remove the assumption about slide size, and propose adaptive slicing of sliding windows for efficient probability calculation. Second, we calculate the occurrence probability of a negation pattern by using an inverted DFA. Finally, we propose the merge of multiple DFAs based on disjunction to process multiple queries efficiently. Experimental results using real and synthetic datasets demonstrate effectiveness of our approach.

  • Modeling N-th Order Derivative Creation Based on Content Attractiveness and Time-Dependent Popularity

    Kosetsu TSUKUDA  Masahiro HAMASAKI  Masataka GOTO  

     
    PAPER

      Pubricized:
    2020/02/05
      Vol:
    E103-D No:5
      Page(s):
    969-981

    For amateur creators, it has been becoming popular to create new content based on existing original work: such new content is called derivative work. We know that derivative creation is popular, but why are individual derivative works created? Although there are several factors that inspire the creation of derivative works, such factors cannot usually be observed on the Web. In this paper, we propose a model for inferring latent factors from sequences of derivative work posting events. We assume a sequence to be a stochastic process incorporating the following three factors: (1) the original work's attractiveness, (2) the original work's popularity, and (3) the derivative work's popularity. To characterize content popularity, we use content ranking data and incorporate rank-biased popularity based on the creators' browsing behaviors. Our main contributions are three-fold. First, to the best of our knowledge, this is the first study modeling derivative creation activity. Second, by using real-world datasets of music-related derivative work creation, we conducted quantitative experiments and showed the effectiveness of adopting all three factors to model derivative creation activity and considering creators' browsing behaviors in terms of the negative logarithm of the likelihood for test data. Third, we carried out qualitative experiments and showed that our model is useful in analyzing following aspects: (1) derivative creation activity in terms of category characteristics, (2) temporal development of factors that trigger derivative work posting events, (3) creator characteristics, (4) N-th order derivative creation process, and (5) original work ranking.

  • A Power Analysis Attack Countermeasure Based on Random Data Path Execution For CGRA

    Wei GE  Shenghua CHEN  Benyu LIU  Min ZHU  Bo LIU  

     
    PAPER-Computer System

      Pubricized:
    2020/02/10
      Vol:
    E103-D No:5
      Page(s):
    1013-1022

    Side-channel Attack, such as simple power analysis and differential power analysis (DPA), is an efficient method to gather the key, which challenges the security of crypto chips. Side-channel Attack logs the power trace of the crypto chip and speculates the key by statistical analysis. To reduce the threat of power analysis attack, an innovative method based on random execution and register randomization is proposed in this paper. In order to enhance ability against DPA, the method disorders the correspondence between power trace and operands by scrambling the data execution sequence randomly and dynamically and randomize the data operation path to randomize the registers that store intermediate data. Experiments and verification are done on the Sakura-G FPGA platform. The results show that the key is not revealed after even 2 million power traces by adopting the proposed method and only 7.23% slices overhead and 3.4% throughput rate cost is introduced. Compared to unprotected chip, it increases more than 4000× measure to disclosure.

  • Universal Testing for Linear Feed-Forward/Feedback Shift Registers

    Hideo FUJIWARA  Katsuya FUJIWARA  Toshinori HOSOKAWA  

     
    PAPER-Dependable Computing

      Pubricized:
    2020/02/25
      Vol:
    E103-D No:5
      Page(s):
    1023-1030

    Linear feed-forward/feedback shift registers are used as an effective tool of testing circuits in various fields including built-in self-test and secure scan design. In this paper, we consider the issue of testing linear feed-forward/feedback shift registers themselves. To test linear feed-forward/feedback shift registers, it is necessary to generate a test sequence for each register. We first present an experimental result such that a commercial ATPG (automatic test pattern generator) cannot always generate a test sequence with high fault coverage even for 64-stage linear feed-forward/feedback shift registers. We then show that there exists a universal test sequence with 100% of fault coverage for the class of linear feed-forward/feedback shift registers so that no test generation is required, i.e., the cost of test generation is zero. We prove the existence theorem of universal test sequences for the class of linear feed-forward/feedback shift registers.

  • Multimodal Analytics to Understand Self-Regulation Process of Cognitive and Behavioral Strategies in Real-World Learning

    Masaya OKADA  Yasutaka KUROKI  Masahiro TADA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/02/05
      Vol:
    E103-D No:5
      Page(s):
    1039-1054

    Recent studies suggest that learning “how to learn” is important because learners must be self-regulated to take more responsibility for their own learning processes, meta-cognitive control, and other generative learning thoughts and behaviors. The mechanism that enables a learner to self-regulate his/her learning strategies has been actively studied in classroom settings, but has seldom been studied in the area of real-world learning in out-of-school settings (e.g., environmental learning in nature). A feature of real-world learning is that a learner's cognition of the world is updated by his/her behavior to investigate the world, and vice versa. This paper models the mechanism of real-world learning for executing and self-regulating a learner's cognitive and behavioral strategies to self-organize his/her internal knowledge space. Furthermore, this paper proposes multimodal analytics to integrate heterogeneous data resources of the cognitive and behavioral features of real-world learning, to structure and archive the time series of strategies occurring through learner-environment interactions, and to assess how learning should be self-regulated for better understanding of the world. Our analysis showed that (1) intellectual achievements are built by self-regulating learning to chain the execution of cognitive and behavioral strategies, and (2) a clue to predict learning outcomes in the world is analyzing the quantity and frequency of strategies that a learner uses and self-regulates. Assessment based on these findings can encourage a learner to reflect and improve his/her way of learning in the world.

  • Multi-Distance Function Trilateration over k-NN Fingerprinting for Indoor Positioning and Its Evaluation

    Makio ISHIHARA  Ryo KAWASHIMA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/02/03
      Vol:
    E103-D No:5
      Page(s):
    1055-1066

    This manuscript discusses a new indoor positioning method and proposes a multi-distance function trilateration over k-NN fingerprinting method using radio signals. Generally, the strength of radio signals, referred to received signal strength indicator or RSSI, decreases as they travel in space. Our method employs a list of fingerprints comprised of RSSIs to absorb interference between radio signals, which happens around the transmitters and it also employs multiple distance functions for conversion from distance between fingerprints to the physical distance in order to absorb the interference that happens around the receiver then it performs trilateration between the top three closest fingerprints to locate the receiver's current position. An experiment in positioning performance is conducted in our laboratory and the result shows that our method is viable for a position-level indoor positioning method and it could improve positioning performance by 12.7% of positioning error to 0.406 in meter in comparison with traditional methods.

  • Cost-Sensitive and Sparse Ladder Network for Software Defect Prediction

    Jing SUN  Yi-mu JI  Shangdong LIU  Fei WU  

     
    LETTER-Software Engineering

      Pubricized:
    2020/01/29
      Vol:
    E103-D No:5
      Page(s):
    1177-1180

    Software defect prediction (SDP) plays a vital role in allocating testing resources reasonably and ensuring software quality. When there are not enough labeled historical modules, considerable semi-supervised SDP methods have been proposed, and these methods utilize limited labeled modules and abundant unlabeled modules simultaneously. Nevertheless, most of them make use of traditional features rather than the powerful deep feature representations. Besides, the cost of the misclassification of the defective modules is higher than that of defect-free ones, and the number of the defective modules for training is small. Taking the above issues into account, we propose a cost-sensitive and sparse ladder network (CSLN) for SDP. We firstly introduce the semi-supervised ladder network to extract the deep feature representations. Besides, we introduce the cost-sensitive learning to set different misclassification costs for defective-prone and defect-free-prone instances to alleviate the class imbalance problem. A sparse constraint is added on the hidden nodes in ladder network when the number of hidden nodes is large, which enables the model to find robust structures of the data. Extensive experiments on the AEEEM dataset show that the CSLN outperforms several state-of-the-art semi-supervised SDP methods.

  • Enhanced Secure Transmission for Indoor Visible Light Communications

    Sheng-Hong LIN  Jin-Yuan WANG  Ying XU  Jianxin DAI  

     
    LETTER-Information Network

      Pubricized:
    2020/02/25
      Vol:
    E103-D No:5
      Page(s):
    1181-1184

    This letter investigates the secure transmission improvement scheme for indoor visible light communications (VLC) by using the protected zone. Firstly, the system model is established. For the input signal, the non-negativity and the dimmable average optical intensity constraint are considered. Based on the system model, the secrecy capacity for VLC without considering the protected zone is obtained. After that, the protected zone is determined, and the construction of the protected zone is also provided. Finally, the secrecy capacity for VLC with the protected zone is derived. Numerical results show that the secure performance of VLC improves dramatically by employing the protected zone.

  • Loss-Driven Channel Pruning of Convolutional Neural Networks

    Xin LONG  Xiangrong ZENG  Chen CHEN  Huaxin XIAO  Maojun ZHANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/02/17
      Vol:
    E103-D No:5
      Page(s):
    1190-1194

    The increase in computation cost and storage of convolutional neural networks (CNNs) severely hinders their applications on limited-resources devices in recent years. As a result, there is impending necessity to accelerate the networks by certain methods. In this paper, we propose a loss-driven method to prune redundant channels of CNNs. It identifies unimportant channels by using Taylor expansion technique regarding to scaling and shifting factors, and prunes those channels by fixed percentile threshold. By doing so, we obtain a compact network with less parameters and FLOPs consumption. In experimental section, we evaluate the proposed method in CIFAR datasets with several popular networks, including VGG-19, DenseNet-40 and ResNet-164, and experimental results demonstrate the proposed method is able to prune over 70% channels and parameters with no performance loss. Moreover, iterative pruning could be used to obtain more compact network.

  • Insertion/Deletion/Substitution Error Correction by a Modified Successive Cancellation Decoding of Polar Code Open Access

    Hikari KOREMURA  Haruhiko KANEKO  

     
    PAPER-Coding Theory

      Vol:
    E103-A No:4
      Page(s):
    695-703

    This paper presents a successive cancellation (SC) decoding of polar codes modified for insertion/deletion/substitution (IDS) error channels, in which insertions and deletions are described by drift values. The recursive calculation of the original SC decoding is modified to include the drift values as stochastic variables. The computational complexity of the modified SC decoding is O (D3) with respect to the maximum drift value D, and O (N log N) with respect to the code length N. The symmetric capacity of polar bit channel is estimated by computer simulations, and frozen bits are determined according to the estimated symmetric capacity. Simulation results show that the decoded error rate of polar code with the modified SC list decoding is lower than that of existing IDS error correction codes, such as marker-based code and spatially-coupled code.

  • Model Checking of Real-Time Properties for Embedded Assembly Program Using Real-Time Temporal Logic RTCTL and Its Application to Real Microcontroller Software

    Yajun WU  Satoshi YAMANE  

     
    PAPER-Software System

      Pubricized:
    2020/01/06
      Vol:
    E103-D No:4
      Page(s):
    800-812

    For embedded systems, verifying both real-time properties and logical validity are important. The embedded system is not only required to the accurate operation but also required to strictly real-time properties. To verify real-time properties is a key problem in model checking. In order to verify real-time properties of assembly program, we develop the simulator to propose the model checking method for verifying assembly programs. Simultaneously, we propose a timed Kripke structure and implement the simulator of the robot's processor to be verified. We propose the timed Kripke structure including the execution time which extends Kripke structure. For the input assembly program, the simulator generates timed Kripke structure by dynamic program analysis. Also, we implement model checker after generating timed Kripke structure in order to verify whether timed Kripke structure satisfies RTCTL formulas. Finally, to evaluate a proposed method, we conduct experiments with the implementation of the verification system. To solve the real problem, we have experimented with real microcontroller software.

  • A New Closed-Form Algorithm for Spatial Three-Dimensional Localization with Multiple One-Dimensional Uniform Linear Arrays

    Yifan WEI  Wanchun LI  Yuning GUO  Hongshu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:4
      Page(s):
    704-709

    This paper presents a three-dimensional (3D) spatial localization algorithm by using multiple one-dimensional uniform linear arrays (ULA). We first discuss geometric features of the angle-of-arrival (AOA) measurements of the array and present the corresponding principle of spatial cone angle intersection positioning with an angular measurement model. Then, we propose a new positioning method with an analytic study on the geometric dilution of precision (GDOP) of target location in different cases. The results of simulation show that the estimation accuracy of this method can attain the Cramér-Rao Bound (CRB) under low measurement noise.

  • Enhanced HDR Image Reproduction Using Gamma-Adaptation-Based Tone Compression and Detail-Preserved Blending

    Taeyoung JUNG  Hyuk-Ju KWON  Joonku HAHN  Sung-Hak LEE  

     
    LETTER-Image

      Vol:
    E103-A No:4
      Page(s):
    728-732

    We propose image synthesizing using luminance adapted range compression and detail-preserved blending. Range compression is performed using the correlated visual gamma then image blending is performed by local adaptive mixing and selecting method. Simulations prove that the proposed method reproduces natural images without any increase in noise or color desaturation.

  • Efficient Computation of Boomerang Connection Probability for ARX-Based Block Ciphers with Application to SPECK and LEA

    Dongyeong KIM  Dawoon KWON  Junghwan SONG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:4
      Page(s):
    677-685

    The boomerang connectivity table (BCT) was introduced by C. Cid et al. Using the BCT, for SPN block cipher, the dependency between sub-ciphers in boomerang structure can be computed more precisely. However, the existing method to generate BCT is difficult to be applied to the ARX-based cipher, because of the huge domain size. In this paper, we show a method to compute the dependency between sub-ciphers in boomerang structure for modular addition. Using bit relation in modular addition, we compute the dependency sequentially in bitwise. And using this method, we find boomerang characteristics and amplified boomerang characteristics for the ARX-based ciphers LEA and SPECK. For LEA-128, we find a reduced 15-round boomerang characteristic and reduced 16-round amplified boomerang characteristic which is two rounds longer than previous boomerang characteristic. Also for SPECK64/128, we find a reduced 13-round amplified boomerang characteristic which is one round longer than previous rectangle characteristic.

  • Linear Constellation Precoded OFDM with Index Modulation Based Orthogonal Cooperative System

    Qingbo WANG  Gaoqi DOU  Ran DENG  Jun GAO  

     
    PAPER

      Pubricized:
    2019/10/15
      Vol:
    E103-B No:4
      Page(s):
    312-320

    The current orthogonal cooperative system (OCS) achieves diversity through the use of relays and the consumption of an additional time slot (TS). To guarantee the orthogonality of the received signal and avoid the mutual interference at the destination, the source has to be mute in the second TS. Consequently, the spectral efficiency (SE) is halved. In this paper, linear constellation precoded orthogonal frequency division multiplexing with index modulation (LCP-OFDM-IM) based OCS is proposed, where the source activates the complementary subcarriers to convey the symbols over two TSs. Hence the source can consecutively transmit information to the destination without the mutual interference. Compared with the current OFDM based OCS, the LCP-OFDM-IM based OCS can achieve a higher SE, since the subcarrier activation patterns (SAPs) can be exploited to convey additional information. Furthermore, the optimal precoder, in the sense of maximizing the minimum Euclidean distance of the symbols conveyed on each subcarrier over two TSs, is provided. Simulation results show the superiority of the LCP-OFDM-IM based OCS over the current OFDM based OCS.

  • Evaluating Deep Learning for Image Classification in Adversarial Environment

    Ye PENG  Wentao ZHAO  Wei CAI  Jinshu SU  Biao HAN  Qiang LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/12/23
      Vol:
    E103-D No:4
      Page(s):
    825-837

    Due to the superior performance, deep learning has been widely applied to various applications, including image classification, bioinformatics, and cybersecurity. Nevertheless, the research investigations on deep learning in the adversarial environment are still on their preliminary stage. The emerging adversarial learning methods, e.g., generative adversarial networks, have introduced two vital questions: to what degree the security of deep learning with the presence of adversarial examples is; how to evaluate the performance of deep learning models in adversarial environment, thus, to raise security advice such that the selected application system based on deep learning is resistant to adversarial examples. To see the answers, we leverage image classification as an example application scenario to propose a framework of Evaluating Deep Learning for Image Classification (EDLIC) to conduct comprehensively quantitative analysis. Moreover, we introduce a set of evaluating metrics to measure the performance of different attacking and defensive techniques. After that, we conduct extensive experiments towards the performance of deep learning for image classification under different adversarial environments to validate the scalability of EDLIC. Finally, we give some advice about the selection of deep learning models for image classification based on these comparative results.

  • A Deep Neural Network-Based Approach to Finding Similar Code Segments

    Dong Kwan KIM  

     
    LETTER-Software Engineering

      Pubricized:
    2020/01/17
      Vol:
    E103-D No:4
      Page(s):
    874-878

    This paper presents a Siamese architecture model with two identical Convolutional Neural Networks (CNNs) to identify code clones; two code fragments are represented as Abstract Syntax Trees (ASTs), CNN-based subnetworks extract feature vectors from the ASTs of pairwise code fragments, and the output layer produces how similar or dissimilar they are. Experimental results demonstrate that CNN-based feature extraction is effective in detecting code clones at source code or bytecode levels.

  • Stronger Hardness Results on the Computational Complexity of Picross 3D

    Kei KIMURA  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E103-A No:4
      Page(s):
    668-676

    Picross 3D is a popular single-player puzzle video game for the Nintendo DS. It presents a rectangular parallelepiped (i.e., rectangular box) made of unit cubes, some of which must be removed to construct an object in three dimensions. Each row or column has at most one integer on it, and the integer indicates how many cubes in the corresponding 1D slice remain when the object is complete. Kusano et al. showed that Picross 3D is NP-complete and Kimura et al. showed that the counting version, the another solution problem, and the fewest clues problem of Picross 3D are #P-complete, NP-complete, and Σ2P-complete, respectively, where those results are shown for the restricted input that the rectangular parallelepiped is of height four. On the other hand, Igarashi showed that Picross 3D is NP-complete even if the height of the input rectangular parallelepiped is one. Extending the result by Igarashi, we in this paper show that the counting version, the another solution problem, and the fewest clues problem of Picross 3D are #P-complete, NP-complete, and Σ2P-complete, respectively, even if the height of the input rectangular parallelepiped is one. Since the height of the rectangular parallelepiped of any instance of Picross 3D is at least one, our hardness results are best in terms of height.

  • Modeling of Transfer Impedance in Automotive BCI Test System with Closed-Loop Method

    Junesang LEE  Hosang LEE  Jungrae HA  Minho KIM  Sangwon YUN  Yeongsik KIM  Wansoo NAH  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2019/10/18
      Vol:
    E103-B No:4
      Page(s):
    405-414

    This paper presents a methodology with which to construct an equivalent simulation model of closed-loop BCI testing for a vehicle component. The proposed model comprehensively takes the transfer impedance of the test configuration into account. The methodology used in this paper relies on circuit modeling and EM modeling as well. The BCI test probes are modeled as the equivalent circuits, and the frequency-dependent losses characteristics in the probe's ferrite are derived using a PSO algorithm. The measurement environments involving the harness cable, load simulator, DUT, and ground plane are designed through three-dimensional EM simulation. The developed circuit model and EM model are completely integrated in a commercial EM simulation tool, EMC Studio of EMCoS Ltd. The simulated results are validated through comparison with measurements. The simulated and measurement results are consistent in the range of 1MHz up to 400MHz.

  • Effective Area Enlarged Photonic Crystal Fiber with Quasi-Uniform Air-Hole Structure for High Power Transmission

    Takashi MATSUI  Kyozo TSUJIKAWA  Takehisa OKUDA  Nobutomo HANZAWA  Yuto SAGAE  Kazuhide NAKAJIMA  Yasuyuki FUJIYA  Kazuyuki SHIRAKI  

     
    PAPER-Optical Fiber for Communications

      Pubricized:
    2019/10/15
      Vol:
    E103-B No:4
      Page(s):
    415-421

    We investigate the potential of photonic crystal fiber (PCF) to realize high quality and high-power transmission. We utilize the PCF with a quasi-uniform air-hole structure, and numerically clarify that the quasi-uniform PCF can realize the effective area (Aeff) of about 500µm2 with bending loss comparable with that of a conventional single-mode fiber for telecom use by considering the quasi single-mode transmission. We then apply the quasi-uniform PCF to kW-class high-power beam delivery for the single-mode laser processing. The cross-sectional design of the PCF with the high-power delivery potential of more than 300kW·m is numerically and experimentally revealed. A 10kW single-mode beam at 1070nm is successfully delivered over a 30m-long optical fiber cable containing a fabricated PCF with single-mode class beam quality of M2 =1.7 for the first time.

1341-1360hit(16314hit)