The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

1941-1960hit(16314hit)

  • Color-to-Gray Conversion Method Considering Contrasts in Color Image

    Shi BAO  Zhiqiang LIU  Go TANAKA  

     
    LETTER-Image

      Vol:
    E101-A No:11
      Page(s):
    1849-1853

    A new projection-based color-to-gray conversion method is proposed in this letter. In the proposed method, an objective function which considers color contrasts in an input image is defined. Projection coefficients are determined by minimizing the objective function. Experimental results show the validity of the proposed method.

  • Impact of Viewing Distance on Task Performance and Its Properties

    Makio ISHIHARA  Yukio ISHIHARA  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2018/07/02
      Vol:
    E101-D No:10
      Page(s):
    2530-2533

    This paper discusses VDT syndrome from the point of view of the viewing distance between a computer screen and user's eyes. This paper conducts a series of experiments to show an impact of the viewing distance on task performance. In the experiments, two different viewing distances of 50cm and 350cm with the same viewing angle of 30degrees are taken into consideration. The results show that the long viewing distance enables people to manipulate the mouse more slowly, more correctly and more precisely than the short.

  • Development of a Low Standby Power Six-Transistor CMOS SRAM Employing a Single Power Supply

    Nobuaki KOBAYASHI  Tadayoshi ENOMOTO  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:10
      Page(s):
    822-830

    We developed and applied a new circuit, called the “Self-controllable Voltage Level (SVL)” circuit, not only to expand both “write” and “read” stabilities, but also to achieve a low stand-by power and data holding capability in a single low power supply, 90-nm, 2-kbit, six-transistor CMOS SRAM. The SVL circuit can adaptively lower and higher the word-line voltages for a “read” and “write” operation, respectively. It can also adaptively lower and higher the memory cell supply voltages for the “write” and “hold” operations, and “read” operation, respectively. This paper focuses on the “hold” characteristics and the standby power dissipations (PST) of the developed SRAM. The average PST of the developed SRAM is only 0.984µW, namely, 9.57% of that (10.28µW) of the conventional SRAM at a supply voltage (VDD) of 1.0V. The data hold margin of the developed SRAM is 0.1839V and that of the conventional SRAM is 0.343V at the supply voltage of 1.0V. An area overhead of the SVL circuit is only 1.383% of the conventional SRAM.

  • Ka-Band Branch Line Coupler Applied Hexagonal Waveguide Suitable for Additive Manufacturing

    Motomi ABE  Hidenori YUKAWA  Yu USHIJIMA  Takuma NISHIMURA  Takeshi OSHIMA  Takeshi YUASA  Naofumi YONEDA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:10
      Page(s):
    805-814

    A hexagonal waveguide branch line coupler suitable for additive manufacturing is proposed in this study, and its design method is elucidated. The additive manufactured Ka-band coupler exhibits characteristics similar to those of a machined coupler, but its weight and cost are reduced by 40% and 60%, respectively. Its effectiveness is also confirmed in this study.

  • PCB-Based Cross-Coupled Differential VCOs Using a Novel LC-Tank Comprised of the Chip Inductors

    Hikaru IKEDA  Yasushi ITOH  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    744-750

    The paper presents the analysis, design and performance of PCB (Printed Circuit Board)-based cross-coupled differential VCOs using a novel LC-tank. As compared with the conventional LC-tank, a novel LC-tank is comprised of only chip inductors and thus has an advantage in providing a higher cutoff frequency. This feature attributes to the use of the parasitic elements of the chip inductors and capacitors. The cutoff frequencies were compared for both LC-tanks by calculation, simulation and measurement. Then the traditional cross-coupled differential oscillators having both LC-tanks were designed, fabricated and performed by using 0.35µm SiGe HBTs and 1005-type chip devices. The implemented oscillator using a novel LC-tank has shown a 0.12GHz higher oscillation frequency, while phase noise characteristics were almost the same. In addition, the cross-coupled differential oscillator utilizes a series RL circuit in order to suppress the concurrent oscillations. The implemented cross-coupled differential VCO employing Si varactor diodes with a capacitance ratio of 2.5 to 1 has achieved a tuning frequency of 0.92 to 1.28GHz, an output power greater than -13.5dBm, a consumed power less than 8.7mW and a phase noise at 100kHz offset in a range from -104 to -100dBc/Hz.

  • TS-ICNN: Time Sequence-Based Interval Convolutional Neural Networks for Human Action Detection and Recognition

    Zhendong ZHUANG  Yang XUE  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2018/07/20
      Vol:
    E101-D No:10
      Page(s):
    2534-2538

    The research on inertial sensor based human action detection and recognition (HADR) is a new area in machine learning. We propose a novel time sequence based interval convolutional neutral networks framework for HADR by combining interesting interval proposals generator and interval-based classifier. Experiments demonstrate the good performance of our method.

  • On Correction-Based Iterative Methods for Eigenvalue Problems

    Takafumi MIYATA  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E101-A No:10
      Page(s):
    1668-1675

    The Jacobi-Davidson method and the Riccati method for eigenvalue problems are studied. In the methods, one has to solve a nonlinear equation called the correction equation per iteration, and the difference between the methods comes from how to solve the equation. In the Jacobi-Davidson/Riccati method the correction equation is solved with/without linearization. In the literature, avoiding the linearization is known as an improvement to get a better solution of the equation and bring the faster convergence. In fact, the Riccati method showed superior convergence behavior for some problems. Nevertheless the advantage of the Riccati method is still unclear, because the correction equation is solved not exactly but with low accuracy. In this paper, we analyzed the approximate solution of the correction equation and clarified the point that the Riccati method is specialized for computing particular solutions of eigenvalue problems. The result suggests that the two methods should be selectively used depending on target solutions. Our analysis was verified by numerical experiments.

  • Frequency Diversity Array MIMO Track-before-Detect in Coherent Repeated Interference

    Yuan ZHAO  Qi ZHANG  Bin TANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:10
      Page(s):
    1703-1707

    This letter proposes a track before detect scheme embedded in coherent repeated interference with the aid of frequency diversity array. The unmatched properties between echo and interferences are firstly discussed from both signal processing and data processing standpoints. Afterward, the interference suppression algorithm with virtual channel weighting at continue sampling stage is proposed, followed with kinematics constraint correspondingly. Further, the evaluations of the interference suppression performance are carried out through simulations which illustrate the feasibility and validity of the proposed algorithm.

  • New Constructions of Zero-Difference Balanced Functions

    Zhibao LIN  Zhengqian LI  Pinhui KE  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:10
      Page(s):
    1719-1723

    Zero-difference balanced (ZDB) functions, which have many applications in coding theory and sequence design, have received a lot of attention in recent years. In this letter, based on two known classes of ZDB functions, a new class of ZDB functions, which is defined on the group (Z2e-1×Zn,+) is presented, where e is a prime and n=p1m1p2m2…pkmk, pi is odd prime satisfying that e|(pi-1) for any 1≤i≤k . In the case of gcd(2e-1,n)=1, the new constructed ZDB functions are cyclic.

  • Queueing Delay Analysis and Optimization of Statistical Data Aggregation and Transmission Systems

    Hideaki YOSHINO  Kenko OTA  Takefumi HIRAGURI  

     
    PAPER-Network

      Pubricized:
    2018/04/02
      Vol:
    E101-B No:10
      Page(s):
    2186-2195

    Data aggregation, which is the process of summarizing a large amount of data, is an effective method for saving limited communication resources, such as radio frequency and sensor-node energy. Packet aggregation in wireless LAN and sensed-data aggregation in wireless sensor networks are typical examples. We propose and analyze two queueing models of fundamental statistical data aggregation schemes: constant interval and constant aggregation number. We represent each aggregation scheme by a tandem queueing network model with a gate at the aggregation process and a single server queue at a transmission process. We analytically derive the stationary distribution and Laplace-Stieltjes transform of the system time for each aggregation and transmission process and of the total system time. We then numerically evaluate the stationary mean system time characteristics and clarify that each model has an optimal aggregation parameter (i.e., an optimal aggregation interval or optimal aggregation number), that minimizes the mean total system time. In addition, we derive the explicit optimal aggregation parameter for a D/M/1 transmission model with each aggregation scheme and clarify that it provides accurate approximation of that of each aggregation model. The optimal aggregation interval was determined by the transmission rate alone, while the optimal aggregation number was determined by the arrival and transmission rates alone with explicitly derived proportional constants. These results can provide a theoretical basis and a guideline for designing aggregation devices, such as IoT gateways.

  • On-Demand Data Gathering with a Drone-Based Mobile Sink in Wireless Sensor Networks Exploiting Wake-Up Receivers Open Access

    Hiroyuki YOMO  Akitoshi ASADA  Masato MIYATAKE  

     
    INVITED PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2094-2103

    The introduction of a drone-based mobile sink into wireless sensor networks (WSNs), which has flexible mobility to move to each sensor node and gather data with a single-hop transmission, makes cumbersome multi-hop transmissions unnecessary, thereby facilitating data gathering from widely-spread sensor nodes. However, each sensor node spends significant amount of energy during their idle state where they wait for the mobile sink to come close to their vicinity for data gathering. In order to solve this problem, in this paper, we apply a wake-up receiver to each sensor node, which consumes much smaller power than the main radio used for data transmissions. The main radio interface is woken up only when the wake-up receiver attached to each node detects a wake-up signal transmitted by the mobile sink. For this mobile and on-demand data gathering, this paper proposes a route control framework that decides the mobility route for a drone-based mobile sink, considering the interactions between wake-up control and physical layer (PHY) and medium access control (MAC) layer operations. We investigate the optimality and effectiveness of the route obtained by the proposed framework with computer simulations. Furthermore, we present experimental results obtained with our test-bed of a WSN employing a drone-based mobile sink and wake-up receivers. All these results give us the insight on the role of wake-up receiver in mobile and on-demand sensing data gathering and its interactions with protocol/system designs.

  • Performance Analysis and Hardware Verification of Feature Detection Using Cyclostationarity in OFDM Signal

    Akihide NAGAMINE  Kanshiro KASHIKI  Fumio WATANABE  Jiro HIROKAWA  

     
    PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2142-2151

    As one functionality of the wireless distributed network (WDN) enabling flexible wireless networks, it is supposed that a dynamic spectrum access is applied to OFDM systems for superior radio resource management. As a basic technology for such WDN, our study deals with the OFDM signal detection based on its cyclostationary feature. Previous relevant studies mainly relied on software simulations based on the Monte Carlo method. This paper analytically clarifies the relationship between the design parameters of the detector and its detection performance. The detection performance is formulated by using multiple design parameters including the transfer function of the receive filter. A hardware experiment with radio frequency (RF) signals is also carried out by using the detector consisting of an RF unit and FPGA. Thereby, it is verified that the detection characteristics represented by the false-alarm and non-detection probabilities calculated by the analytical formula agree well with those obtained by the hardware experiment. Our analysis and experiment results are useful for the parameter design of the signal detector to satisfy required performance criteria.

  • Low Storage, but Highly Accurate Measurement-Based Spectrum Database via Mesh Clustering

    Rei HASEGAWA  Keita KATAGIRI  Koya SATO  Takeo FUJII  

     
    PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2152-2161

    Spectrum databases are required to assist the process of radio propagation estimation for spectrum sharing. Especially, a measurement-based spectrum database achieves highly efficient spectrum sharing by storing the observed radio environment information such as the signal power transmitted from a primary user. However, when the average received signal power is calculated in a given square mesh, the bias of the observation locations within the mesh strongly degrades the accuracy of the statistics because of the influence of terrain and buildings. This paper proposes a method for determining the statistics by using mesh clustering. The proposed method clusters the feature vectors of the measured data by using the k-means and Gaussian mixture model methods. Simulation results show that the proposed method can decrease the error between the measured value and the statistically processed value even if only a small amount of data is available in the spectrum database.

  • Receive Power Control in Multiuser Inductive Power Transfer System Using Single-Frequency Coil Array

    Quang-Thang DUONG  Minoru OKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/04/05
      Vol:
    E101-B No:10
      Page(s):
    2222-2229

    This paper investigates receive power control for multiuser inductive power transfer (IPT) systems with a single-frequency coil array. The primary task is to optimize the transmit coil currents to minimize the total input power, subject to the minimum receive powers required by individual users. Due to the complicated coupling mechanism among all transmit coils and user pickups, the optimization problem is a non-convex quadratically constrained quadratic program (QCQP), which is analytically intractable. This paper solves the problem by applying the semidefinite relaxation (SDR) technique and evaluates the performance by full-wave electromagnetic simulations. Our results show that a single-frequency coil array is capable of power control for various multiuser scenarios, assuming that the number of transmit coils is greater than or equal to the number of users and the transmission conditions for individual users are uncorrelated.

  • Data Synchronization Method among Isolated Servers Using Mobile Relays

    Kazuya ANAZAWA  Toshiaki MIYAZAKI  Peng LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/04/04
      Vol:
    E101-B No:10
      Page(s):
    2239-2249

    After large-scale disasters, information sharing among people becomes more important than usual. This, however, is extremely difficult to achieve in disaster zones due to serious damage to the existing network infrastructure, power outages, and high traffic congestion. For the quick provision of alternative networks to serve heavy communication demands after disasters, establishing local area networks (LANs) consisting of portable servers with data storage has been considered as one of the most promising solutions. Based on the established LAN and a data server in each area, people can share many kinds of disaster-related information such as emergency information and supply/demand information via deployed neighboring servers. However, due to the lack of stable Internet connection, these servers are isolated and cannot be synchronized in real time. To enable and guarantee more efficient information sharing across the whole disaster-hit area, data stored on each server should be synchronized without the Internet. Our solution is to propose an intermittent data synchronization scheme that uses moving vehicles as relays to exchange data between isolated servers after disasters. With the objective of maximizing the total number of synchronized high priority data under the capability constraints of mobile relays, we first propose a data allocation scheme (DAS) from a server to a mobile relay. After that, we propose a trajectory planning scheme for the relays which is formulated as a Mixed Integer Linear Fractional Programming (MILFP) problem, and an algorithm to solve it efficiently. Extensive simulations and comparisons with other methods show the superior performance of our proposals.

  • Development of Small Dielectric Lens for Slot Antenna Using Topology Optimization with Normalized Gaussian Network

    Keiichi ITOH  Haruka NAKAJIMA  Hideaki MATSUDA  Masaki TANAKA  Hajime IGARASHI  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    784-790

    This paper reports a novel 3D topology optimization method based on the finite difference time domain (FDTD) method for a dielectric lens antenna. To obtain an optimal lens with smooth boundary, we apply normalized Gaussian networks (NGnet) to 3D topology optimization. Using the proposed method, the dielectric lens with desired radiation characteristics can be designed. As an example of the optimization using the proposed method, the width of the main beam is minimized assuming spatial symmetry. In the optimization, the lens is assumed to be loaded on the aperture of a waveguide slot antenna and is smaller compared with the wavelength. It is shown that the optimized lens has narrower beamwidth of the main beam than that of the conventional lens.

  • Improving Distantly Supervised Relation Extraction by Knowledge Base-Driven Zero Subject Resolution

    Eun-kyung KIM  Key-Sun CHOI  

     
    LETTER-Natural Language Processing

      Pubricized:
    2018/07/11
      Vol:
    E101-D No:10
      Page(s):
    2551-2558

    This paper introduces a technique for automatically generating potential training data from sentences in which entity pairs are not apparently presented in a relation extraction. Most previous works on relation extraction by distant supervision ignored cases in which a relationship may be expressed via null-subjects or anaphora. However, natural language text basically has a network structure that is composed of several sentences. If they are closely related, this is not expressed explicitly in the text, which can make relation extraction difficult. This paper describes a new model that augments a paragraph with a “salient entity” that is determined without parsing. The entity can create additional tuple extraction environments as potential subjects in paragraphs. Including the salient entity as part of the sentential input may allow the proposed method to identify relationships that conventional methods cannot identify. This method also has promising potential applicability to languages for which advanced natural language processing tools are lacking.

  • Dynamic Fixed-Point Design of Neuromorphic Computing Systems

    Yongshin KANG  Jaeyong CHUNG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:10
      Page(s):
    840-844

    Practical deep neural networks have a number of weight parameters, and the dynamic fixed-point formats have been used to represent them efficiently. The dynamic fixed-point representations share an scaling factor among a group of numbers, and the weights in a layer have been formed into such a group. In this paper, we first explore a design space for dynamic fixed-point neuromorphic computing systems and show that it is indispensable to have a small group size in neuromorphic architectures, because it is appropriate to group the weights associated with a neuron into a group. We then presents a dynamic fixed-point representation designed for neuromorphic computing systems. Our experimental results show that the proposed representation reduces the required weight bitwidth by about 4 bits compared to the conventional fixed-point format.

  • RbWL: Recency-Based Static Wear Leveling for Lifetime Extension and Overhead Reduction in NAND Flash Memory Systems

    Sang-Ho HWANG  Jong Wook KWAK  

     
    LETTER-Software System

      Pubricized:
    2018/07/09
      Vol:
    E101-D No:10
      Page(s):
    2518-2522

    In this letter, we propose a static wear leveling technique, called Recency-based Wear Leveling (RbWL). The basic idea of RbWL is to execute static wear leveling at minimum levels, because the frequent migrations of cold data by static wear leveling cause significant overhead in a NAND flash memory system. RbWL adjusts the execution frequency according to a threshold value that reflects the lifetime difference of the hot/cold blocks and the total lifetime of the NAND flash memory system. The evaluation results show that RbWL improves the lifetime of NAND flash memory systems by 52%, and it also reduces the overhead of wear leveling from 8% to 42% and from 13% to 51%, in terms of the number of erase operations and the number of page migrations of valid pages, respectively, compared with other algorithms.

  • Design of Capacitive Coupler in Underwater Wireless Power Transfer Focusing on kQ Product

    Masaya TAMURA  Yasumasa NAKA  Kousuke MURAI  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    759-766

    This paper presents the design of a capacitive coupler for underwater wireless power transfer (U-WPT) focusing on kQ product. Power transfer efficiency hinges on the coupling coefficient k between the couplers and Q-factor of water calculated from the complex permittivity. High efficiency can be achieved by handling k and the Q-factor effectively. First, the pivotal elements on k are derived from the equivalent circuit of the coupler. Next, the frequency characteristic of the Q-factor in tap water is calculated from the measured results. Then, the design parameters in which kQ product has the maximal values are determined. Finally, it is demonstrated that the efficiency of U-WPT with the capacitive coupling designed by our method achieves approximately 80%.

1941-1960hit(16314hit)