The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPAR(322hit)

61-80hit(322hit)

  • Density of Pooling Matrices vs. Sparsity of Signals for Group Testing Problems

    Jin-Taek SEONG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:5
      Page(s):
    1081-1084

    In this paper, we consider a group testing (GT) problem. We derive a lower bound on the probability of error for successful decoding of defected binary signals. To this end, we exploit Fano's inequality theorem in the information theory. We show that the probability of error is bounded as an entropy function, a density of a pooling matrix and a sparsity of a binary signal. We evaluate that for decoding of highly sparse signals, the pooling matrix is required to be dense. Conversely, if dense signals are needed to decode, the sparse pooling matrix should be designed to achieve the small probability of error.

  • 2-D DOA Estimation Based on Sparse Bayesian Learning for L-Shaped Nested Array

    Lu CHEN  Daping BI  Jifei PAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/10/23
      Vol:
    E102-B No:5
      Page(s):
    992-999

    In sparsity-based optimization problems for two dimensional (2-D) direction-of-arrival (DOA) estimation using L-shaped nested arrays, one of the major issues is computational complexity. A 2-D DOA estimation algorithm is proposed based on reconsitution sparse Bayesian learning (RSBL) and cross covariance matrix decomposition. A single measurement vector (SMV) model is obtained by the difference coarray corresponding to one-dimensional nested array. Through spatial smoothing, the signal measurement vector is transformed into a multiple measurement vector (MMV) matrix. The signal matrix is separated by singular values decomposition (SVD) of the matrix. Using this method, the dimensionality of the sensing matrix and data size can be reduced. The sparse Bayesian learning algorithm is used to estimate one-dimensional angles. By using the one-dimensional angle estimations, the steering vector matrix is reconstructed. The cross covariance matrix of two dimensions is decomposed and transformed. Then the closed expression of the steering vector matrix of another dimension is derived, and the angles are estimated. Automatic pairing can be achieved in two dimensions. Through the proposed algorithm, the 2-D search problem is transformed into a one-dimensional search problem and a matrix transformation problem. Simulations show that the proposed algorithm has better angle estimation accuracy than the traditional two-dimensional direction finding algorithm at low signal-to-noise ratio and few samples.

  • Periodic Reactance Time Functions for 2-Element ESPAR Antennas Applied to 2-Output SIMO/MIMO Receivers

    Kosei KAWANO  Masato SAITO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/22
      Vol:
    E102-B No:4
      Page(s):
    930-939

    In this paper, we propose a periodic reactance time function for 2-element electronically steerable passive array radiator (ESPAR) antennas applicable to the receivers of both single-input multiple-output (SIMO) and multiple-input multiple-output (MIMO) systems with 2 outputs. Based on the proposed function, we evaluate the power patterns of the antenna for various distances between two antenna elements. Moreover, for the distances, we discuss the correlation properties and the strength of the two outputs to find the appropriate distance for the receiver. From the discussions, we can conclude that distances from 0.1 to 0.35 times the wavelength are effective in terms of receive diversity.

  • Distributed Compressed Sensing via Generalized Approximate Message Passing for Jointly Sparse Signals

    Jingjing SI  Yinbo CHENG  Kai LIU  

     
    LETTER-Image

      Vol:
    E102-A No:4
      Page(s):
    702-707

    Generalized approximate message passing (GAMP) is introduced into distributed compressed sensing (DCS) to reconstruct jointly sparse signals under the mixed support-set model. A GAMP algorithm with known support-set is presented and the matching pursuit generalized approximate message passing (MPGAMP) algorithm is modified. Then, a new joint recovery algorithm, referred to as the joint MPGAMP algorithm, is proposed. It sets up the jointly shared support-set of the signal ensemble with the support exploration ability of matching pursuit and recovers the signals' amplitudes on the support-set with the good reconstruction performance of GAMP. Numerical investigation shows that the joint MPGAMP algorithm provides performance improvements in DCS reconstruction compared to joint orthogonal matching pursuit, joint look ahead orthogonal matching pursuit and regular MPGAMP.

  • Simplified User Grouping Algorithm for Massive MIMO on Sparse Beam-Space Channels

    Maliheh SOLEIMANI  Mahmood MAZROUEI-SEBDANI  Robert C. ELLIOTT  Witold A. KRZYMIEŃ  Jordan MELZER  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/09/13
      Vol:
    E102-B No:3
      Page(s):
    623-631

    Massive multiple-input multiple-output (MIMO) systems are a key promising technology for future broadband cellular networks. The propagation paths within massive MIMO radio channels are often sparse, both in the sub-6GHz frequency band and at millimeter wave frequencies. Herein, we propose a two-layer beamforming scheme for downlink transmission over massive multiuser MIMO sparse beam-space channels. The first layer employs a bipartite graph to dynamically group users in the beam-space domain; the aim is to minimize inter-user interference while significantly reducing the effective channel dimensionality. The second layer performs baseband linear MIMO precoding to maximize spatial multiplexing gain and system throughput. Simulation results demonstrate the proposed two-layer beamforming scheme outperforms other, more conventional algorithms.

  • Eager Memory Management for In-Memory Data Analytics

    Hakbeom JANG  Jonghyun BAE  Tae Jun HAM  Jae W. LEE  

     
    LETTER-Computer System

      Pubricized:
    2018/12/11
      Vol:
    E102-D No:3
      Page(s):
    632-636

    This paper introduces e-spill, an eager spill mechanism, which dynamically finds the optimal spill-threshold by monitoring the GC time at runtime and thereby prevent expensive GC overhead. Our e-spill adopts a slow-start model to gradually increase the spill-threshold until it reaches the optimal point without substantial GCs. We prototype e-spill as an extension to Spark and evaluate it using six workloads on three different parallel platforms. Our evaluations show that e-spill improves performance by up to 3.80× and saves the cost of cluster operation on Amazon EC2 cloud by up to 51% over the baseline system following Spark Tuning Guidelines.

  • Sparse DP Quantization Algorithm Open Access

    Yukihiro BANDOH  Seishi TAKAMURA  Atsushi SHIMIZU  

     
    PAPER-Image

      Vol:
    E102-A No:3
      Page(s):
    553-565

    We formulate the design of an optimal quantizer as an optimization problem that finds the quantization indices that minimize quantization error. As a solution of the optimization problem, an approach based on dynamic programming, which is called DP quantization, is proposed. It is observed that quantized signals do not always contain all kinds of signal values which can be represented with given bit-depth. This property is called amplitude sparseness. Because quantization is the amplitude discretization of signal value, amplitude sparseness is closely related to quantizer design. Signal values with zero frequency do not impact quantization error, so there is the potential to reduce the complexity of the optimal quantizer by not computing signal values that have zero frequency. However, conventional methods for DP quantization were not designed to consider amplitude sparseness, and so fail to reduce complexity. The proposed algorithm offers a reduced complexity optimal quantizer that minimizes quantization error while addressing amplitude sparseness. Experimental results show that the proposed algorithm can achieve complexity reduction over conventional DP quantization by 82.9 to 84.2% on average.

  • Semitransparent Organic Solar Cells with Polyethylenimine Ethoxylated Interfacial Layer Using Lamination Process

    Keisuke SHODA  Masahiro MORIMOTO  Shigeki NAKA  Hiroyuki OKADA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    196-198

    Semitransparent organic solar cells were fabricated using lamination process. The devices were realized by using two independent substrates with transparent indium-tin-oxide electrode. One substrate was coated with poly(ethylenedioxy-thiophene)/poly(styrenesulfonate) layer and active layer of poly(3-hexylthiophene-2,5-diyl) (P3HT) and (6,6)-phenyl-C61 butyric acid methyl ester mixture. Another substrate was coated with ultra-thin polyethylenimine ethoxylated. The two substrates were laminated using hot press system. The device exhibited semitransparency and showed typical photovoltaic characteristics with open voltage of 0.59 V and short circuit current of 2.9 mA/cm2.

  • Real-Time Sparse Visual Tracking Using Circulant Reverse Lasso Model

    Chenggang GUO  Dongyi CHEN  Zhiqi HUANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/10/09
      Vol:
    E102-D No:1
      Page(s):
    175-184

    Sparse representation has been successfully applied to visual tracking. Recent progresses in sparse tracking are mainly made within the particle filter framework. However, most sparse trackers need to extract complex feature representations for each particle in the limited sample space, leading to expensive computation cost and yielding inferior tracking performance. To deal with the above issues, we propose a novel sparse tracking method based on the circulant reverse lasso model. Benefiting from the properties of circulant matrices, densely sampled target candidates are implicitly generated by cyclically shifting the base feature descriptors, and then embedded into a reverse sparse reconstruction model as a dictionary to encode a robust appearance template. The alternating direction method of multipliers is employed for solving the reverse sparse model and the optimization process can be efficiently solved in the frequency domain, which enables the proposed tracker to run in real-time. The calculated sparse coefficient map represents the similarity scores between the template and circular shifted samples. Thus the target location can be directly predicted according to the coordinates of the peak coefficient. A scale-aware template updating strategy is combined with the correlation filter template learning to take into account both appearance deformations and scale variations. Both quantitative and qualitative evaluations on two challenging tracking benchmarks demonstrate that the proposed algorithm performs favorably against several state-of-the-art sparse representation based tracking methods.

  • Optimization of a Sparse Array Antenna for 3D Imaging in Near Range

    Andrey LYULYAKIN  Iakov CHERNYAK  Motoyuki SATO  

     
    BRIEF PAPER

      Vol:
    E102-C No:1
      Page(s):
    46-50

    In order to improve an imaging performance of a sparse array radar system we propose an optimization method to find a new antenna array layout. The method searches for a minimum of the cost function based on a 3D point spread function of the array. We found a solution for the simulated problem in a form of the new layout for the antenna array with more sparse middle-point distribution comparing with initial one.

  • Image Watermarking Technique Using Embedder and Extractor Neural Networks

    Ippei HAMAMOTO  Masaki KAWAMURA  

     
    PAPER

      Pubricized:
    2018/10/19
      Vol:
    E102-D No:1
      Page(s):
    19-30

    An autoencoder has the potential ability to compress and decompress information. In this work, we consider the process of generating a stego-image from an original image and watermarks as compression, and the process of recovering the original image and watermarks from the stego-image as decompression. We propose embedder and extractor neural networks based on the autoencoder. The embedder network learns mapping from the DCT coefficients of the original image and a watermark to those of the stego-image. The extractor network learns mapping from the DCT coefficients of the stego-image to the watermark. Once the proposed neural network has been trained, the network can embed and extract the watermark into unlearned test images. We investigated the relation between the number of neurons and network performance by computer simulations and found that the trained neural network could provide high-quality stego-images and watermarks with few errors. We also evaluated the robustness against JPEG compression and found that, when suitable parameters were used, the watermarks were extracted with an average BER lower than 0.01 and image quality over 35 dB when the quality factor Q was over 50. We also investigated how to represent the watermarks in the stego-image by our neural network. There are two possibilities: distributed representation and sparse representation. From the results of investigation into the output of the stego layer (3rd layer), we found that the distributed representation emerged at an early learning step and then sparse representation came out at a later step.

  • Side Scan Sonar Image Super Resolution via Region-Selective Sparse Coding

    Jaihyun PARK  Bonhwa KU  Youngsaeng JIN  Hanseok KO  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2018/10/22
      Vol:
    E102-D No:1
      Page(s):
    210-213

    Side scan sonar using low frequency can quickly search a wide range, but the images acquired are of low quality. The image super resolution (SR) method can mitigate this problem. The SR method typically uses sparse coding, but accurately estimating sparse coefficients incurs substantial computational costs. To reduce processing time, we propose a region-selective sparse coding based SR system that emphasizes object regions. In particular, the region that contains interesting objects is detected for side scan sonar based underwater images so that the subsequent sparse coding based SR process can be selectively applied. Effectiveness of the proposed method is verified by the reduced processing time required for image reconstruction yet preserving the same level of visual quality as conventional methods.

  • Frequency Resource Management Based on Model Predictive Control for Satellite Communications System

    Yuma ABE  Hiroyuki TSUJI  Amane MIURA  Shuichi ADACHI  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:12
      Page(s):
    2434-2445

    We propose an approach to allocate bandwidth for a satellite communications (SATCOM) system that includes the recent high-throughput satellite (HTS) with frequency flexibility. To efficiently operate the system, we manage the limited bandwidth resources available for SATCOM by employing a control method that allows the allocated bandwidths to exceed the communication demand of user terminals per HTS beam. To this end, we consider bandwidth allocation for SATCOM as an optimal control problem. Then, assuming that the model of communication requests is available, we propose an optimal control method by combining model predictive control and sparse optimization. The resulting control method enables the efficient use of the limited bandwidth and reduces the bandwidth loss and number of control actions for the HTS compared to a setup with conventional frequency allocation and no frequency flexibility. Furthermore, the proposed method allows to allocate bandwidth depending on various control objectives and beam priorities by tuning the corresponding weighting matrices. These findings were verified through numerical simulations by using a simple time variation model of the communication requests and predicted aircraft communication demand obtained from the analysis of actual flight tracking data.

  • A Low-Complexity and Fast Convergence Message Passing Receiver Based on Partial Codeword Transmission for SCMA Systems

    Xuewan ZHANG  Wenping GE  Xiong WU  Wenli DAI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2018/05/16
      Vol:
    E101-B No:11
      Page(s):
    2259-2266

    Sparse code multiple access (SCMA) based on the message passing algorithm (MPA) for multiuser detection is a competitive non-orthogonal multiple access technique for fifth-generation wireless communication networks Among the existing multiuser detection schemes for uplink (UP) SCMA systems, the serial MPA (S-MPA) scheme, where messages are updated sequentially, generally converges faster than the conventional MPA (C-MPA) scheme, where all messages are updated in a parallel manner. In this paper, the optimization of message scheduling in the S-MPA scheme is proposed. Firstly, some statistical results for the probability density function (PDF) of the received signal are obtained at various signal-to-noise ratios (SNR) by using the Monte Carlo method. Then, based on the non-orthogonal property of SCMA, the data mapping relationship between resource nodes and user nodes is comprehensively analyzed. A partial codeword transmission of S-MPA (PCTS-MPA) with threshold decision scheme of PDF is proposed and verified. Simulations show that the proposed PCTS-MPA not only reduces the complexity of MPA without changing the bit error ratio (BER), but also has a faster convergence than S-MPA, especially at high SNR values.

  • Optimal Design of Adaptive Intra Predictors Based on Sparsity Constraint

    Yukihiro BANDOH  Yuichi SAYAMA  Seishi TAKAMURA  Atsushi SHIMIZU  

     
    PAPER-Image

      Vol:
    E101-A No:11
      Page(s):
    1795-1805

    It is essential to improve intra prediction performance to raise the efficiency of video coding. In video coding standards such as H.265/HEVC, intra prediction is seen as an extension of directional prediction schemes, examples include refinement of directions, planar extension, filtering reference sampling, and so on. From the view point of reducing prediction error, some improvements on intra prediction for standardized schemes have been suggested. However, on the assumption that the correlation between neighboring pixels are static, these conventional methods use pre-defined predictors regardless of the image being encoded. Therefore, these conventional methods cannot reduce prediction error if the images break the assumption made in prediction design. On the other hand, adaptive predictors that change the image being encoded may offer poor coding efficiency due to the overhead of the additional information needed for adaptivity. This paper proposes an adaptive intra prediction scheme that resolves the trade-off between prediction error and adaptivity overhead. The proposed scheme is formulated as a constrained optimization problem that minimizes prediction error under sparsity constraints on the prediction coefficients. In order to solve this problem, a novel solver is introduced as an extension of LARS for multi-class support. Experiments show that the proposed scheme can reduce the amount of encoded bits by 1.21% to 3.24% on average compared to HM16.7.

  • Deterministic Constructions of Compressed Sensing Matrices Based on Affine Singular Linear Space over Finite Fields

    Gang WANG  Min-Yao NIU  Jian GAO  Fang-Wei FU  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:11
      Page(s):
    1957-1963

    Compressed sensing theory provides a new approach to acquire data as a sampling technique and makes sure that a sparse signal can be reconstructed from few measurements. The construction of compressed sensing matrices is a main problem in compressed sensing theory (CS). In this paper, the deterministic constructions of compressed sensing matrices based on affine singular linear space over finite fields are presented and a comparison is made with the compressed sensing matrices constructed by DeVore based on polynomials over finite fields. By choosing appropriate parameters, our sparse compressed sensing matrices are superior to the DeVore's matrices. Then we use a new formulation of support recovery to recover the support sets of signals with sparsity no more than k on account of binary compressed sensing matrices satisfying disjunct and inclusive properties.

  • Binary Sparse Representation Based on Arbitrary Quality Metrics and Its Applications

    Takahiro OGAWA  Sho TAKAHASHI  Naofumi WADA  Akira TANAKA  Miki HASEYAMA  

     
    PAPER-Image, Vision

      Vol:
    E101-A No:11
      Page(s):
    1776-1785

    Binary sparse representation based on arbitrary quality metrics and its applications are presented in this paper. The novelties of the proposed method are twofold. First, the proposed method newly derives sparse representation for which representation coefficients are binary values, and this enables selection of arbitrary image quality metrics. This new sparse representation can generate quality metric-independent subspaces with simplification of the calculation procedures. Second, visual saliency is used in the proposed method for pooling the quality values obtained for all of the parts within target images. This approach enables visually pleasant approximation of the target images more successfully. By introducing the above two novel approaches, successful image approximation considering human perception becomes feasible. Since the proposed method can provide lower-dimensional subspaces that are obtained by better image quality metrics, realization of several image reconstruction tasks can be expected. Experimental results showed high performance of the proposed method in terms of two image reconstruction tasks, image inpainting and super-resolution.

  • Joint Estimation of Frequency and DOA with Spatio-Temporal Sub-Nyquist Sampling Based on Spectrum Correction and Chinese Remainder Theorem

    Xiangdong HUANG  Mengkai YANG  Mingzhuo LIU  Lin YANG  Haipeng FU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/03/14
      Vol:
    E101-B No:9
      Page(s):
    2007-2016

    This paper addresses joint estimation of the frequency and the direction-of-arrival (DOA), under the relaxed condition that both snapshots in the temporal domain and sensors in the spacial domain are sparsely spaced. Specifically, a novel coprime sparse array allowing a large range for interelement spacings is employed in the proposed joint scheme, which greatly alleviates the conventional array's half-wavelength constraint. Further, by incorporating small-sized DFT spectrum correction with the closed-form robust Chinese Remainder Theorem (CRT), both spectral aliasing and integer phase ambiguity caused by spatio-temporal under-sampling can be removed in an efficient way. As a result, these two parameters can be efficiently estimated by reusing the observation data collected in parallel at different undersampling rates, which remarkably improves the data utilization. Numerical results demonstrate that the proposed joint scheme is highly accurate.

  • Sparse Graph Based Deep Learning Networks for Face Recognition

    Renjie WU  Sei-ichiro KAMATA  

     
    PAPER

      Pubricized:
    2018/06/20
      Vol:
    E101-D No:9
      Page(s):
    2209-2219

    In recent years, deep learning based approaches have substantially improved the performance of face recognition. Most existing deep learning techniques work well, but neglect effective utilization of face correlation information. The resulting performance loss is noteworthy for personal appearance variations caused by factors such as illumination, pose, occlusion, and misalignment. We believe that face correlation information should be introduced to solve this network performance problem originating from by intra-personal variations. Recently, graph deep learning approaches have emerged for representing structured graph data. A graph is a powerful tool for representing complex information of the face image. In this paper, we survey the recent research related to the graph structure of Convolutional Neural Networks and try to devise a definition of graph structure included in Compressed Sensing and Deep Learning. This paper devoted to the story explain of two properties of our graph - sparse and depth. Sparse can be advantageous since features are more likely to be linearly separable and they are more robust. The depth means that this is a multi-resolution multi-channel learning process. We think that sparse graph based deep neural network can more effectively make similar objects to attract each other, the relative, different objects mutually exclusive, similar to a better sparse multi-resolution clustering. Based on this concept, we propose a sparse graph representation based on the face correlation information that is embedded via the sparse reconstruction and deep learning within an irregular domain. The resulting classification is remarkably robust. The proposed method achieves high recognition rates of 99.61% (94.67%) on the benchmark LFW (YTF) facial evaluation database.

  • An Efficient Misalignment Method for Visual Tracking Based on Sparse Representation

    Shan JIANG  Cheng HAN  Xiaoqiang DI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/05/14
      Vol:
    E101-D No:8
      Page(s):
    2123-2131

    Sparse representation has been widely applied to visual tracking for several years. In the sparse representation framework, tracking problem is transferred into solving an L1 minimization issue. However, during the tracking procedure, the appearance of target was affected by external environment. Therefore, we proposed a robust tracking algorithm based on the traditional sparse representation jointly particle filter framework. First, we obtained the observation image set from particle filter. Furthermore, we introduced a 2D transformation on the observation image set, which enables the tracking target candidates set more robust to handle misalignment problem in complex scene. Moreover, we adopt the occlusion detection mechanism before template updating, reducing the drift problem effectively. Experimental evaluations on five public challenging sequences, which exhibit occlusions, illuminating variations, scale changes, motion blur, and our tracker demonstrate accuracy and robustness in comparisons with the state-of-the-arts.

61-80hit(322hit)