The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPAR(322hit)

101-120hit(322hit)

  • Ground Plane Detection with a New Local Disparity Texture Descriptor

    Kangru WANG  Lei QU  Lili CHEN  Jiamao LI  Yuzhang GU  Dongchen ZHU  Xiaolin ZHANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2017/06/27
      Vol:
    E100-D No:10
      Page(s):
    2664-2668

    In this paper, a novel approach is proposed for stereo vision-based ground plane detection at superpixel-level, which is implemented by employing a Disparity Texture Map in a convolution neural network architecture. In particular, the Disparity Texture Map is calculated with a new Local Disparity Texture Descriptor (LDTD). The experimental results demonstrate our superior performance in KITTI dataset.

  • Random-Valued Impulse Noise Removal Using Non-Local Search for Similar Structures and Sparse Representation

    Kengo TSUDA  Takanori FUJISAWA  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E100-A No:10
      Page(s):
    2146-2153

    In this paper, we introduce a new method to remove random-valued impulse noise in an image. Random-valued impulse noise replaces the pixel value at a random position by a random value. Due to the randomness of the noisy pixel values, it is difficult to detect them by comparison with neighboring pixels, which is used in many conventional methods. Then we improve the recent noise detector which uses a non-local search of similar structure. Next we propose a new noise removal algorithm by sparse representation using DCT basis. Furthermore, the sparse representation can remove impulse noise by using the neighboring similar image patch. This method has much more superior noise removal performance than conventional methods at images. We confirm the effectiveness of the proposed method quantitatively and qualitatively.

  • Sheared EPI Analysis for Disparity Estimation from Light Fields

    Takahiro SUZUKI  Keita TAKAHASHI  Toshiaki FUJII  

     
    PAPER

      Pubricized:
    2017/06/14
      Vol:
    E100-D No:9
      Page(s):
    1984-1993

    Structure tensor analysis on epipolar plane images (EPIs) is a successful approach to estimate disparity from a light field, i.e. a dense set of multi-view images. However, the disparity range allowable for the light field is limited because the estimation becomes less accurate as the range of disparities become larger. To overcome this limitation, we developed a new method called sheared EPI analysis, where EPIs are sheared before the structure tensor analysis. The results of analysis obtained with different shear values are integrated into a final disparity map through a smoothing process, which is the key idea of our method. In this paper, we closely investigate the performance of sheared EPI analysis and demonstrate the effectiveness of the smoothing process by extensively evaluating the proposed method with 15 datasets that have large disparity ranges.

  • Entropy-Based Sparse Trajectories Prediction Enhanced by Matrix Factorization

    Lei ZHANG  Qingfu FAN  Wen LI  Zhizhen LIANG  Guoxing ZHANG  Tongyang LUO  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2017/06/05
      Vol:
    E100-D No:9
      Page(s):
    2215-2218

    Existing moving object's trajectory prediction algorithms suffer from the data sparsity problem, which affects the accuracy of the trajectory prediction. Aiming to the problem, we present an Entropy-based Sparse Trajectories Prediction method enhanced by Matrix Factorization (ESTP-MF). Firstly, we do trajectory synthesis based on trajectory entropy and put synthesized trajectories into the trajectory space. It can resolve the sparse problem of trajectory data and make the new trajectory space more reliable. Secondly, under the new trajectory space, we introduce matrix factorization into Markov models to improve the sparse trajectory prediction. It uses matrix factorization to infer transition probabilities of the missing regions in terms of corresponding existing elements in the transition probability matrix. It aims to further solve the problem of data sparsity. Experiments with a real trajectory dataset show that ESTP-MF generally improves prediction accuracy by as much as 6% and 4% compared to the SubSyn algorithm and STP-EE algorithm respectively.

  • Packed Compact Tries: A Fast and Efficient Data Structure for Online String Processing

    Takuya TAKAGI  Shunsuke INENAGA  Kunihiko SADAKANE  Hiroki ARIMURA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1785-1793

    We present a new data structure called the packed compact trie (packed c-trie) which stores a set S of k strings of total length n in nlog σ+O(klog n) bits of space and supports fast pattern matching queries and updates, where σ is the alphabet size. Assume that α=logσn letters are packed in a single machine word on the standard word RAM model, and let f(k,n) denote the query and update times of the dynamic predecessor/successor data structure of our choice which stores k integers from universe [1,n] in O(klog n) bits of space. Then, given a string of length m, our packed c-tries support pattern matching queries and insert/delete operations in $O( rac{m}{alpha} f(k,n))$ worst-case time and in $O( rac{m}{alpha} + f(k,n))$ expected time. Our experiments show that our packed c-tries are faster than the standard compact tries (a.k.a. Patricia trees) on real data sets. We also discuss applications of our packed c-tries.

  • Data-Sparsity Tolerant Web Service Recommendation Approach Based on Improved Collaborative Filtering

    Lianyong QI  Zhili ZHOU  Jiguo YU  Qi LIU  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2017/06/06
      Vol:
    E100-D No:9
      Page(s):
    2092-2099

    With the ever-increasing number of web services registered in service communities, many users are apt to find their interested web services through various recommendation techniques, e.g., Collaborative Filtering (i.e., CF)-based recommendation. Generally, CF-based recommendation approaches can work well, when a target user has similar friends or the target services (i.e., services preferred by the target user) have similar services. However, when the available user-service rating data is very sparse, it is possible that a target user has no similar friends and the target services have no similar services; in this situation, traditional CF-based recommendation approaches fail to generate a satisfying recommendation result. In view of this challenge, we combine Social Balance Theory (abbreviated as SBT; e.g., “enemy's enemy is a friend” rule) and CF to put forward a novel data-sparsity tolerant recommendation approach Ser_RecSBT+CF. During the recommendation process, a pruning strategy is adopted to decrease the searching space and improve the recommendation efficiency. Finally, through a set of experiments deployed on a real web service quality dataset WS-DREAM, we validate the feasibility of our proposal in terms of recommendation accuracy, recall and efficiency. The experiment results show that our proposed Ser_RecSBT+CF approach outperforms other up-to-date approaches.

  • Ontology-Based Driving Decision Making: A Feasibility Study at Uncontrolled Intersections

    Lihua ZHAO  Ryutaro ICHISE  Zheng LIU  Seiichi MITA  Yutaka SASAKI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/04/05
      Vol:
    E100-D No:7
      Page(s):
    1425-1439

    This paper presents an ontology-based driving decision making system, which can promptly make safety decisions in real-world driving. Analyzing sensor data for improving autonomous driving safety has become one of the most promising issues in the autonomous vehicles research field. However, representing the sensor data in a machine understandable format for further knowledge processing still remains a challenging problem. In this paper, we introduce ontologies designed for autonomous vehicles and ontology-based knowledge base, which are used for representing knowledge of maps, driving paths, and perceived driving environments. Advanced Driver Assistance Systems (ADAS) are developed to improve safety of autonomous vehicles by accessing to the ontology-based knowledge base. The ontologies can be reused and extended for constructing knowledge base for autonomous vehicles as well as for implementing different types of ADAS such as decision making system.

  • Toward Large-Pixel Number High-Speed Imaging Exploiting Time and Space Sparsity

    Naoki NOGAMI  Akira HIRABAYASHI  Takashi IJIRI  Jeremy WHITE  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:6
      Page(s):
    1279-1285

    In this paper, we propose an algorithm that enhances the number of pixels for high-speed imaging. High-speed cameras have a principle problem that the number of pixels reduces when the number of frames per second (fps) increases. To enhance the number of pixels, we suppose an optical structure that block-randomly selects some percent of pixels in an image. Then, we need to reconstruct the entire image. For this, a state-of-the-art method takes three-dimensional reconstruction strategy, which requires a heavy computational cost in terms of time. To reduce the cost, the proposed method reconstructs the entire image frame-by-frame using a new cost function exploiting two types of sparsity. One is within each frame and the other is induced from the similarity between adjacent frames. The latter further means not only in the image domain, but also in a sparsifying transformed domain. Since the cost function we define is convex, we can find the optimal solution using a convex optimization technique with small computational cost. We conducted simulations using grayscale image sequences. The results show that the proposed method produces a sequence, mostly the same quality as the state-of-the-art method, with dramatically less computational time.

  • SpEnD: Linked Data SPARQL Endpoints Discovery Using Search Engines

    Semih YUMUSAK  Erdogan DOGDU  Halife KODAZ  Andreas KAMILARIS  Pierre-Yves VANDENBUSSCHE  

     
    PAPER

      Pubricized:
    2017/01/17
      Vol:
    E100-D No:4
      Page(s):
    758-767

    Linked data endpoints are online query gateways to semantically annotated linked data sources. In order to query these data sources, SPARQL query language is used as a standard. Although a linked data endpoint (i.e. SPARQL endpoint) is a basic Web service, it provides a platform for federated online querying and data linking methods. For linked data consumers, SPARQL endpoint availability and discovery are crucial for live querying and semantic information retrieval. Current studies show that availability of linked datasets is very low, while the locations of linked data endpoints change frequently. There are linked data respsitories that collect and list the available linked data endpoints or resources. It is observed that around half of the endpoints listed in existing repositories are not accessible (temporarily or permanently offline). These endpoint URLs are shared through repository websites, such as Datahub.io, however, they are weakly maintained and revised only by their publishers. In this study, a novel metacrawling method is proposed for discovering and monitoring linked data sources on the Web. We implemented the method in a prototype system, named SPARQL Endpoints Discovery (SpEnD). SpEnD starts with a “search keyword” discovery process for finding relevant keywords for the linked data domain and specifically SPARQL endpoints. Then, the collected search keywords are utilized to find linked data sources via popular search engines (Google, Bing, Yahoo, Yandex). By using this method, most of the currently listed SPARQL endpoints in existing endpoint repositories, as well as a significant number of new SPARQL endpoints, have been discovered. We analyze our findings in comparison to Datahub collection in detail.

  • A Speech Enhancement Method Based on Multi-Task Bayesian Compressive Sensing

    Hanxu YOU  Zhixian MA  Wei LI  Jie ZHU  

     
    PAPER-Speech and Hearing

      Pubricized:
    2016/11/30
      Vol:
    E100-D No:3
      Page(s):
    556-563

    Traditional speech enhancement (SE) algorithms usually have fluctuant performance when they deal with different types of noisy speech signals. In this paper, we propose multi-task Bayesian compressive sensing based speech enhancement (MT-BCS-SE) algorithm to achieve not only comparable performance to but also more stable performance than traditional SE algorithms. MT-BCS-SE algorithm utilizes the dependence information among compressive sensing (CS) measurements and the sparsity of speech signals to perform SE. To obtain sufficient sparsity of speech signals, we adopt overcomplete dictionary to transform speech signals into sparse representations. K-SVD algorithm is employed to learn various overcomplete dictionaries. The influence of the overcomplete dictionary on MT-BCS-SE algorithm is evaluated through large numbers of experiments, so that the most suitable dictionary could be adopted by MT-BCS-SE algorithm for obtaining the best performance. Experiments were conducted on well-known NOIZEUS corpus to evaluate the performance of the proposed algorithm. In these cases of NOIZEUS corpus, MT-BCS-SE is shown that to be competitive or even superior to traditional SE algorithms, such as optimally-modified log-spectral amplitude (OMLSA), multi-band spectral subtraction (SSMul), and minimum mean square error (MMSE), in terms of signal-noise ratio (SNR), speech enhancement gain (SEG) and perceptual evaluation of speech quality (PESQ) and to have better stability than traditional SE algorithms.

  • Pattern Synthesis of Sparse Linear Arrays Using Spider Monkey Optimization

    Huaning WU  Yalong YAN  Chao LIU  Jing ZHANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/10/06
      Vol:
    E100-B No:3
      Page(s):
    426-432

    This paper introduces and uses spider monkey optimization (SMO) for synthesis sparse linear arrays, which are composed of a uniformly spaced core subarray and an extended sparse subarray. The amplitudes of all the elements and the locations of elements in the extended sparse subarray are optimized by the SMO algorithm to reduce the side lobe levels of the whole array, under a set of practical constraints. To show the efficiency of SMO, different examples are presented and solved. Simulation results of the sparse arrays designed by SMO are compared with published results to verify the effectiveness of the SMO method.

  • Sparse Recovery Using Sparse Sensing Matrix Based Finite Field Optimization in Network Coding

    Ganzorig GANKHUYAG  Eungi HONG  Yoonsik CHOE  

     
    LETTER-Information Network

      Pubricized:
    2016/11/04
      Vol:
    E100-D No:2
      Page(s):
    375-378

    Network coding (NC) is considered a new paradigm for distributed networks. However, NC has an all-or-nothing property. In this paper, we propose a sparse recovery approach using sparse sensing matrix to solve the NC all-or-nothing problem over a finite field. The effectiveness of the proposed approach is evaluated based on a sensor network.

  • lq Sparsity Penalized STAP Algorithm with Sidelobe Canceler Architecture for Airborne Radar

    Xiaoxia DAI  Wei XIA  Wenlong HE  

     
    LETTER-Information Theory

      Vol:
    E100-A No:2
      Page(s):
    729-732

    Much attention has recently been paid to sparsity-aware space-time adaptive processing (STAP) algorithms. The idea of sparsity-aware technology is commonly based on the convex l1-norm penalty. However, some works investigate the lq (0 < q < 1) penalty which induces more sparsity owing to its lack of convexity. We herein consider the design of an lq penalized STAP processor with a generalized sidelobe canceler (GSC) architecture. The lq cyclic descent (CD) algorithm is utilized with the least squares (LS) design criterion. It is validated through simulations that the lq penalized STAP processor outperforms the existing l1-based counterparts in both convergence speed and steady-state performance.

  • Hierarchical Sparse Bayesian Learning with Beta Process Priors for Hyperspectral Imagery Restoration

    Shuai LIU  Licheng JIAO  Shuyuan YANG  Hongying LIU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2016/11/04
      Vol:
    E100-D No:2
      Page(s):
    350-358

    Restoration is an important area in improving the visual quality, and lays the foundation for accurate object detection or terrain classification in image analysis. In this paper, we introduce Beta process priors into hierarchical sparse Bayesian learning for recovering underlying degraded hyperspectral images (HSI), including suppressing the various noises and inferring the missing data. The proposed method decomposes the HSI into the weighted summation of the dictionary elements, Gaussian noise term and sparse noise term. With these, the latent information and the noise characteristics of HSI can be well learned and represented. Solved by Gibbs sampler, the underlying dictionary and the noise can be efficiently predicted with no tuning of any parameters. The performance of the proposed method is compared with state-of-the-art ones and validated on two hyperspectral datasets, which are contaminated with the Gaussian noises, impulse noises, stripes and dead pixel lines, or with a large number of data missing uniformly at random. The visual and quantitative results demonstrate the superiority of the proposed method.

  • A Spectrum-Based Saliency Detection Algorithm for Millimeter-Wave InSAR Imaging with Sparse Sensing

    Yilong ZHANG  Yuehua LI  Safieddin SAFAVI-NAEINI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/10/25
      Vol:
    E100-D No:2
      Page(s):
    388-391

    Object detection in millimeter-wave Interferometric Synthetic Aperture Radiometer (InSAR) imaging is always a crucial task. Facing unpredictable and numerous objects, traditional object detection models running after the InSAR system accomplishing imaging suffer from disadvantages such as complex clutter backgrounds, weak intensity of objects, Gibbs ringing, which makes a general purpose saliency detection system for InSAR necessary. This letter proposes a spectrum-based saliency detection algorithm to extract the salient regions from unknown backgrounds cooperating with sparse sensing InSAR imaging procedure. Directly using the interferometric value and sparse information of scenes in the basis of the Discrete Cosine Transform (DCT) domain adopted by InSAR imaging procedure, the proposed algorithm isolates the support of saliency region and then inversely transforms it back to calculate the saliency map. Comparing with other detecting algorithms which run after accomplishing imaging, the proposed algorithm will not be affected by information-loss accused by imaging procedure. Experimental results prove that it is effective and adaptable for millimeter-wave InSAR imaging.

  • Sparse Representation for Color Image Super-Resolution with Image Quality Difference Evaluation

    Zi-wen WANG  Guo-rui FENG  Ling-yan FAN  Jin-wei WANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2016/10/19
      Vol:
    E100-D No:1
      Page(s):
    150-159

    The sparse representation models have been widely applied in image super-resolution. The certain optimization problem is supposed and can be solved by the iterative shrinkage algorithm. During iteration, the update of dictionaries and similar patches is necessary to obtain prior knowledge to better solve such ill-conditioned problem as image super-resolution. However, both the processes of iteration and update often spend a lot of time, which will be a bottleneck in practice. To solve it, in this paper, we present the concept of image quality difference based on generalized Gaussian distribution feature which has the same trend with the variation of Peak Signal to Noise Ratio (PSNR), and we update dictionaries or similar patches from the termination strategy according to the adaptive threshold of the image quality difference. Based on this point, we present two sparse representation algorithms for image super-resolution, one achieves the further improvement in image quality and the other decreases running time on the basis of image quality assurance. Experimental results also show that our quantitative results on several test datasets are in line with exceptions.

  • Blind Identification of Multichannel Systems Based on Sparse Bayesian Learning

    Kai ZHANG  Hongyi YU  Yunpeng HU  Zhixiang SHEN  Siyu TAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/06/28
      Vol:
    E99-B No:12
      Page(s):
    2614-2622

    Reliable wireless communication often requires accurate knowledge of the underlying multipath channels. Numerous measurement campaigns have shown that physical multipath channels tend to exhibit a sparse structure. Conventional blind channel identification (BCI) strategies such as the least squares, which are known to be optimal under the assumption of rich multipath channels, are ill-suited to exploiting the inherent sparse nature of multipath channels. Recently, l1-norm regularized least-squares-type approaches have been proposed to address this problem with a single parameter governing all coefficients, which is equivalent to maximum a posteriori probability estimation with a Laplacian prior for the channel coefficients. Since Laplace prior is not conjugate to the Gaussian likelihood, no closed form of Bayesian inference is possible. Following a different approach, this paper deals with blind channel identification of a single-input multiple-output (SIMO) system based on sparse Bayesian learning (SBL). The inherent sparse nature of wireless multipath channels is exploited by incorporating a transformative cross relation formulation into a general Bayesian framework, in which the filter coefficients are governed by independent scalar parameters. A fast iterative Bayesian inference method is then applied to the proposed model for obtaining sparse solutions, which completely eliminates the need for computationally costly parameter fine tuning, which is necessary in the l1-norm regularization method. Simulation results are provided to demonstrate the superior effectiveness of the proposed channel estimation algorithm over the conventional least squares (LS) scheme as well as the l1-norm regularization method. It is shown that the proposed algorithm exhibits superior estimation performance compared to both LS and l1-norm regularization methods.

  • Time Delay Estimation via Co-Prime Aliased Sparse FFT

    Bei ZHAO  Chen CHENG  Zhenguo MA  Feng YU  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:12
      Page(s):
    2566-2570

    Cross correlation is a general way to estimate time delay of arrival (TDOA), with a computational complexity of O(n log n) using fast Fourier transform. However, since only one spike is required for time delay estimation, complexity can be further reduced. Guided by Chinese Remainder Theorem (CRT), this paper presents a new approach called Co-prime Aliased Sparse FFT (CASFFT) in O(n1-1/d log n) multiplications and O(mn) additions, where m is smooth factor and d is stage number. By adjusting these parameters, it can achieve a balance between runtime and noise robustness. Furthermore, it has clear advantage in parallelism and runtime for a large range of signal-to-noise ratio (SNR) conditions. The accuracy and feasibility of this algorithm is analyzed in theory and verified by experiment.

  • Fast Spectral BRDF & BTDF Measurements for Characterization of Displays and Components Open Access

    Pierre BOHER  Thierry LEROUX  Véronique COLLOMB-PATTON  Thibault BIGNON  

     
    INVITED PAPER

      Vol:
    E99-C No:11
      Page(s):
    1255-1263

    In the present paper we show how to obtain rapidly the spectral BRDF and BTDF of different display components or transparent displays using Fourier optics system under different illumination configurations. Results can be used to simulate the entire structure of a LCD display or to predict transparent display performances under various illuminations.

  • Transparent Discovery of Hidden Service

    Rui WANG  Qiaoyan WEN  Hua ZHANG  Sujuan QIN  Wenmin LI  

     
    LETTER-Information Network

      Pubricized:
    2016/08/08
      Vol:
    E99-D No:11
      Page(s):
    2817-2820

    Tor's hidden services provide both sender privacy and recipient privacy to users. A hot topic in security of Tor is how to deanonymize its hidden services. Existing works proved that the recipient privacy could be revealed, namely a hidden server's real IP address could be located. However, the hidden service's circuit is bi-directionally anonymous, and the sender privacy can also be revealed. In this letter, we propose a novel approach that can transparently discover the client of the hidden service. Based on extensive analysis on the hidden service protocol, we find a combination of cells which can be used to generate a special traffic feature with the cell-padding mechanism of Tor. A user can implement some onion routers in Tor networks and monitor traffic passing through them. Once the traffic feature is discovered, the user confirms one of the controlled routers is chosen as the entry router, and the adjacent node is the client. Compared with the existing works, our approach does not disturb the normal communication of the hidden service. Simulations have demonstrated the effectiveness of our method.

101-120hit(322hit)