The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPEC(1274hit)

481-500hit(1274hit)

  • Translation of State Machines from Equational Theories into Rewrite Theories with Tool Support

    Min ZHANG  Kazuhiro OGATA  Masaki NAKAMURA  

     
    PAPER-Specification Translation

      Vol:
    E94-D No:5
      Page(s):
    976-988

    This paper presents a strategy together with tool support for the translation of state machines from equational theories into rewrite theories, aiming at automatically generating rewrite theory specifications. Duplicate effort can be saved on specifying state machines both in equational theories and rewrite theories, when we incorporate the theorem proving facilities of CafeOBJ with the model checking facilities of Maude. Experimental results show that efficiencies of the generated specifications by the proposed strategy are significantly improved, compared with those that are generated by three other existing translation strategies.

  • A Novel Reconstruction and Tracking of 3D-Articulated Human Body from 2D Point Correspondences of a Monocular Image Sequence

    Kittiya KHONGKRAPHAN  Pakorn KAEWTRAKULPONG  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E94-D No:5
      Page(s):
    1090-1098

    A novel method is proposed to estimate the 3D relative positions of an articulated body from point correspondences in an uncalibrated monocular image sequence. It is based on a camera perspective model. Unlike previous approaches, our proposed method does not require camera parameters or a manual specification of the 3D pose at the first frame, nor does it require the assumption that at least one predefined segment in every frame is parallel to the image plane. Our work assumes a simpler assumption, for example, the actor stands vertically parallel to the image plane and not all of his/her joints lie on a plane parallel to the image plane in the first frame. Input into our algorithm consists of a topological skeleton model and 2D position data on the joints of a human actor. By geometric constraint of body parts in the skeleton model, 3D relative coordinates of the model are obtained. This reconstruction from 2D to 3D is an ill-posed problem due to non-uniqueness of solutions. Therefore, we introduced a technique based on the concept of multiple hypothesis tracking (MHT) with a motion-smoothness function between consecutive frames to automatically find the optimal solution for this ill-posed problem. Since reconstruction configurations are obtained from our closed-form equation, our technique is very efficient. Very accurate results were attained for both synthesized and real-world image sequences. We also compared our technique with both scaled-orthographic and existing perspective approaches. Our proposed method outperformed other approaches, especially in scenes with strong perspective effects and difficult poses.

  • Reiterative MSMIL-Based Interference Suppression Algorithm Combined with Two-Dimensional Adaptive Beamforming

    Lingjiang KONG  Bin ZHAO  Meifang LUO  Guolong CUI  

     
    LETTER-Sensing

      Vol:
    E94-B No:5
      Page(s):
    1519-1521

    Based on the reiterative maximum signal minus interference level (MSMIL) criterion and adaptive beamforming, a novel interference suppression algorithm is proposed for shared-spectrum multistatic radar that must contend with clutter. In this algorithm, two-dimensional adaptive beamformers are designed for azimuths and range cells. Numerical results show advantages of the proposed method.

  • A State-Aware Protocol Fuzzer Based on Application-Layer Protocols

    Takahisa KITAGAWA  Miyuki HANAOKA  Kenji KONO  

     
    PAPER-Information Network

      Vol:
    E94-D No:5
      Page(s):
    1008-1017

    In the face of constant malicious attacks to network-connected software systems, software vulnerabilities need to be discovered early in the development phase. In this paper, we present AspFuzz, a state-aware protocol fuzzer based on the specifications of application-layer protocols. AspFuzz automatically generates anomalous messages that exploit possible vulnerabilities. The key observation behind AspFuzz is that most attack messages violate the strict specifications of application-layer protocols. For example, they do not conform to the rigid format or syntax required of each message. In addition, some attack messages ignore the protocol states and have incorrect orders of messages. AspFuzz automatically generates a large number of anomalous messages that deliberately violate the specifications of application-layer protocols. To demonstrate the effectiveness of AspFuzz, we conducted experiments with POP3 and HTTP servers. With AspFuzz, we can discover 20 reported and 1 previously unknown vulnerabilities for POP3 servers and 25 reported vulnerabilities for HTTP servers. Two vulnerabilities among these can be discovered by the state-awareness of AspFuzz. It can also find a SIP state-related vulnerability.

  • An Adaptive Cooperative Spectrum Sensing Scheme Using Reinforcement Learning for Cognitive Radio Sensor Networks

    Thuc KIEU-XUAN  Insoo KOO  

     
    LETTER-Network

      Vol:
    E94-B No:5
      Page(s):
    1456-1459

    This letter proposes a novel decision fusion algorithm for cooperative spectrum sensing in cognitive radio sensor networks where a reinforcement learning algorithm is utilized at the fusion center to estimate the sensing performance of local spectrum sensing nodes. The estimates are then used to determine the weights of local decisions for the final decision making process that is based on the Chair-Vashney optimal decision fusion rule. Simulation results show that the sensing accuracy of the proposed scheme is comparable to that of the Chair-Vashney optimal decision fusion based scheme even though it does not require any knowledge of prior probabilities and local sensing performance of spectrum sensing nodes.

  • A Multiple Antenna Spectrum Sensing Scheme Based on Space and Time Diversity in Cognitive Radios

    Wenshan YIN  Pinyi REN  Zhou SU  Ruijuan MA  

     
    PAPER-Radio System

      Vol:
    E94-B No:5
      Page(s):
    1254-1264

    Multiple antenna is introduced into spectrum sensing in cognitive radios recently. However, conventional multiple antenna spectrum sensing schemes exploited only space diversity. In this paper, we propose a new multiple antenna sensing scheme based on space and time diversity (MASS-BSTD). First, the primary user signal to be sensed is over-sampled at each antenna, and signal samples collected at the same time instant from different antennas are stacked into a column vector. Second, each column vector is utilized to estimate space correlation matrix that exploits space diversity, and two consecutive column vectors are utilized to estimate time correlation matrix that exploits time diversity. Third, the estimated space correlation matrix and time correlation matrix are combined and analyzed using eigenvalue decomposition to reduce information redundancy of signals from multiple antennas. Lastly, the derived eigenvalues are utilized to construct the test statistic and sense the presence of the primary user signal. Since the proposed MASS-BSTD exploits both space diversity and time diversity, it achieves performance gain over the counterparts that only exploit space diversity. Furthermore, the proposed MASS-BSTD requires no prior information on the primary user, the channel between primary user transmitter and secondary user receiver, and is robust to noise uncertainty. Theoretical analysis and simulation results show that the proposed MASS-BSTD can sense the presence of primary user signal reliably.

  • Frequency Sharing Mechanism Using Pilot Sensing in OFDMA-Based Cognitive Radio Networks

    Tae-Hwan KIM  Tae-Jin LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:4
      Page(s):
    986-996

    Mobile operators need to migrate from 2G to 3G networks in a cost-effective manner. Cognitive radio systems are currently being investigated as a promising solution to achieve spectrum efficiency by allowing coexistence of unlicensed (secondary) networks and licensed (primary) networks. However, conventional mechanisms to operate these systems incur additional complexity and fail to maximize network performance. In this paper, we propose a pilot sensing and frequency selection method with low complexity for OFDMA-based cognitive radio systems. Subject to the interference constraints imposed by the primary network, capacity maximization problems involving both up-link and down-link connections are considered for overall network performance improvement. The throughput and outage probability of the proposed method are evaluated by simulations. Our proposed method shows outstanding performance if the channel varies frequently in the primary network and the frequency reuse factor of the primary network is high.

  • Effect of Correlations on the Performance of GLRT Detector in Cognitive Radios

    Xi YANG  Shengliang PENG   Pengcheng ZHU  Hongyang CHEN  Xiuying CAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:4
      Page(s):
    1089-1093

    The sensing scheme based on the generalized likelihood ratio test (GLRT) technique has attracted a lot of research interest in the field of cognitive radios (CR). Although its potential advantages in detecting correlated primary signal have been illustrated in prior work, no theoretical analysis of the positive effects of the correlation has appeared in the literature. In this letter, we derive the theoretical false-alarm and detection probabilities of GLRT detector. The theoretical analysis shows that, in the low signal-to-noise ratio (SNR) region, the detector's performance can be improved by exploiting the high correlations between the primary signal samples. The conclusions of the analysis are verified by numerical simulation results.

  • Performance Improvement in Cognitive Radio Systems with Correlated Multiple Antennas

    Yixian LIU  Yide WANG  Gang WEI  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:4
      Page(s):
    1053-1056

    The performance of spectrum sensing in cognitive radio can be improved by employing multiple antennas. In this letter, the effect of antenna correlation on the performance improvement by deploying multiple antennas in the sensing node of the secondary system is investigated. It is proved mathematically that in the regime of low SNR, with antenna correlation, the secondary sensing node can achieve almost the same performance improvement as that without correlation. Simulation results verify the conclusions.

  • Distant-Talking Speech Recognition Based on Spectral Subtraction by Multi-Channel LMS Algorithm

    Longbiao WANG  Norihide KITAOKA  Seiichi NAKAGAWA  

     
    PAPER-Speech and Hearing

      Vol:
    E94-D No:3
      Page(s):
    659-667

    We propose a blind dereverberation method based on spectral subtraction using a multi-channel least mean squares (MCLMS) algorithm for distant-talking speech recognition. In a distant-talking environment, the channel impulse response is longer than the short-term spectral analysis window. By treating the late reverberation as additive noise, a noise reduction technique based on spectral subtraction was proposed to estimate the power spectrum of the clean speech using power spectra of the distorted speech and the unknown impulse responses. To estimate the power spectra of the impulse responses, a variable step-size unconstrained MCLMS (VSS-UMCLMS) algorithm for identifying the impulse responses in a time domain is extended to a frequency domain. To reduce the effect of the estimation error of the channel impulse response, we normalize the early reverberation by cepstral mean normalization (CMN) instead of spectral subtraction using the estimated impulse response. Furthermore, our proposed method is combined with conventional delay-and-sum beamforming. We conducted recognition experiments on a distorted speech signal simulated by convolving multi-channel impulse responses with clean speech. The proposed method achieved a relative error reduction rate of 22.4% in relation to conventional CMN. By combining the proposed method with beamforming, a relative error reduction rate of 24.5% in relation to the conventional CMN with beamforming was achieved using only an isolated word (with duration of about 0.6 s) to estimate the spectrum of the impulse response.

  • BER Analysis and Verification of EBPSK System in AWGN Channel

    Man FENG  Lenan WU  Jiajia DING  Chenhao QI  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E94-B No:3
      Page(s):
    806-809

    The extended binary phase shift keying (EBPSK) transmission system with ultra narrow bandwidth has excellent BER performance, which raises many doubts with the researchers. Therefore, on the premise of the existence of a special filter that can transform the modulated phase information into amplitude information, the theoretical BER formula of EBPSK system in Additive White Gaussian Noise (AWGN) channel has been deduced. This paper gives the theoretical values of the parameters in the above BER formula and discusses the effects of parameters on BER firstly. Then the paper shows that the special impacting filter satisfies the above assumption, therefore, in the frame of binary detection theory, the excellent performance of high-efficiency EBPSK system can be explained and the correction of the theoretical BER formula can be validated.

  • New Constructions of Frequency-Hopping Sequences from Power-Residue Sequences

    Pinhui KE  Zhihua WANG  Zheng YANG  

     
    LETTER-Information Theory

      Vol:
    E94-A No:3
      Page(s):
    1029-1033

    In this letter, we give a generalized construction for sets of frequency-hopping sequences (FHSs) based on power-residue sequences. Our construction encompasses a known optimal construction and can generate new optimal sets of FHSs which simultaneously achieve the Peng-Fan bound and the Lempel-Greenberger bound.

  • Continuous-Phase, Unmodulated Parallel-Combinatory High-Compaction Multicarrier Modulation

    Ryuji HAYASHI  Masanori HAMAMURA  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E94-B No:3
      Page(s):
    802-805

    A new type of modulation called continuous-phase parallel-combinatory high-compaction multicarrier modulation (CPPC/HC-MCM) is proposed. CPPC/HC-MCM employs the technique of continuous-phase modulation (CPM) and avoids the formation of amplitude gaps between two successive signals to enhance the spectral efficiency of conventional PC/HC-MCM. Results of simulations show that CPPC/HC-MCM is spectrally efficient and achieves a smaller bit error rate than conventional (unmodulated) PC/HC-MCM at a common spectral efficiency even if the peak-to-average power ratio is considered.

  • Dynamic Multi-Band Sharing in Cognitive Radio Networks: A Market Game Approach

    Dapeng LI  Youyun XU  Jing LIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:2
      Page(s):
    499-507

    The traditional spectrum auctions require a central auctioneer. Then, the secondary users (SUs) can bid for spectrum in multiple auction or sealed auction way. In this paper, we address the problem of distributed spectrum sharing in the cognitive networks where multiple owners sell their spare bands to multiple SUs. Each SU equips multi-interface/multi-radio, so that SU can buy spare bands from multiple owners. On the other hand, each owner can sell its spare bands to serval SUs. There are two questions to be addressed for such an environment: the first one is how to select bands/the owners for each SU; the second one is how to decide the competitive prices for the multiple owners and multiple SUs. To this end, we propose a two-side multi-band market game theoretic framework to jointly consider the benefits of all SUs and owners. The equilibrium concept in such games is named core. The outcomes in the core of the game cannot be improved upon by any subset of players. These outcomes correspond exactly to the price-lists that competitively balance the benefits of all SUs and owners. We show that the core in our model is always non-empty. When the measurement of price takes discrete value, the core of the game is defined as discrete core. The Dynamic Multi-band Sharing algorithm (DMS) is proposed to converge to the discrete core of the game. With small enough measurement unit of price, the algorithm can achieve the optimal performance compared with centralized one in terms of the system utility.

  • Estimation of Material Efficiency in Electrophoretic Deposition of Conjugated Polymer from Optical Absorption of Residual Suspension

    Kazuya TADA  Mitsuyoshi ONODA  

     
    BRIEF PAPER

      Vol:
    E94-C No:2
      Page(s):
    193-195

    The nanoporosity installed in conjugated polymer films prepared by electrophoretic deposition makes it difficult to measure the amount of polymer deposited on a substrate. Here, an alternative approach, the estimation of material efficiency of the electrophoretic deposition from the optical absorption spectra of the residual suspensions has been studied. The ultimate recovery rate, which becomes smaller in suspensions with lower acetonitrile content, does not depend on the deposition voltage. The light scattering by the colloidal particles seems to be absent in residual suspensions after a deposition long enough to reach the ultimate recovery rate, indicating the exhaustion of the colloidal particles. Although the deposition rate of the polymer markedly lowers upon coating of the deposition electrode with PEDOT, the ultimate recovery rate remains unchanged. These results suggest that the material efficiency in this deposition method is limited by the generation rate of the colloidal particles in the suspension.

  • Free Electron Laser-Polymerization of C60 Grown by Liquid-Liquid-Interfacial Precipitation Method

    Daiki KOIDE  Shouta KATO  Eri IKEDA  Nobuyuki IWATA  Hiroshi YAMAMOTO  

     
    PAPER

      Vol:
    E94-C No:2
      Page(s):
    151-156

    The purpose of this work is to synthesize a three-dimension C60 polymer using photo-polymerization method. The used pristine materials were C60 precipitates prepared by a liquid-liquid interfacial precipitation (LLIP) method. The prepared LLIP material was set in the vacuum and was compressed in the anvil with the pressure of 600 MPa or 7 GPa. The 4th harmonics FEL with the wavelength of 500 nm was irradiated with macro-pulses (the pulse width of 20 µs) containing very short micro-pulses (the pulse width of 200 fs). The Raman Ag(2) peak of C60 molecules in the vicinity of 1469 cm-1 becomes broad and shifts to the lower energy region as proceeding of polymerization. Under high pressure and/or FEL irradiation the LLIP crystal revealed the large red-shift and the increment of the half width of the Raman Ag(2) peak. Furthermore the LLIP crystal mixture with iodine revealed the more distinctive red-shift, ca.13cm-1 because of highly packing of C60 molecules. The C60 molecular accession by LLIP process and/or the photo-assisted hole-doping from iodine were promising conditions to promote the photo-polymerization effectively.

  • Performance Optimization of Time Delay Estimation Based on Chirp Spread Spectrum Using ESPRIT

    Seong-Hyun JANG  Yeong-Sam KIM  Sang-Hoon YOON  Jong-Wha CHONG  

     
    LETTER-Sensing

      Vol:
    E94-B No:2
      Page(s):
    607-609

    In this letter, we analyze the effect of the size of observed data on the performance of time delay estimation (TDE) in the chirp spread spectrum (CSS) system. By adjusting the size of observed data, we reduce the effect of DC offsets, which would otherwise degrade the performance of TDE based on CSS, and we optimize the performance of TDE in CSS system. Finally, we derive the optimal size of observed data of TDE in CSS system.

  • Ultra-Long-Haul WDM Transmission with High Spectral Efficiency Open Access

    Yi CAI  Jin-Xing CAI  Carl R. DAVIDSON  Dmitri G. FOURSA  Alan J. LUCERO  Oleg V. SINKIN  Yu SUN  Alexei N. PILIPETSKII  Georg MOHS  Neal S. BERGANO  

     
    INVITED PAPER

      Vol:
    E94-B No:2
      Page(s):
    392-399

    We review our recent work on ultra-long-haul wavelength division multiplexed (WDM) transmission with high spectral efficiency (SE) employing tight pre-filtering and multi-symbol detection. We start the discussion with a theoretical evaluation of the SE limit of pre-filtered modulation in optical fiber communication systems. We show that pre-filtering induced symbol correlation generates a modulation with memory and thus, a higher SE limit than that of the original memory-less modulation. We also investigate the merits of utilizing the pre-filtering induced symbol correlation with multi-symbol detection to achieve high SE transmission. We demonstrate transoceanic WDM transmission of a pre-filtered polarization division multiplexed return-to-zero quaternary phased shift keying (PDM-RZ-QPSK) modulation format with multi-symbol detection, achieving 419% SE which is higher than the SE limit of the original memory-less PDM-RZ-QPSK format.

  • 256 QAM Digital Coherent Optical Transmission Using Raman Amplifiers Open Access

    Masato YOSHIDA  Seiji OKAMOTO  Tatsunori OMIYA  Keisuke KASAI  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E94-B No:2
      Page(s):
    417-424

    To meet the increasing demand to expand wavelength division multiplexing (WDM) transmission capacity, ultrahigh spectral density coherent optical transmission employing multi-level modulation formats has attracted a lot of attention. In particular, ultrahigh multi-level quadrature amplitude modulation (QAM) has an enormous advantage as regards expanding the spectral efficiency to 10 bit/s/Hz and even approaching the Shannon limit. We describe fundamental technologies for ultrahigh spectral density coherent QAM transmission and present experimental results on polarization-multiplexed 256 QAM coherent optical transmission using heterodyne and homodyne detection with a frequency-stabilized laser and an optical phase-locked loop technique. In this experiment, Raman amplifiers are newly adopted to decrease the signal power, which can reduce the fiber nonlinearity. As a result, the power penalty was reduced from 5.3 to 2.0 dB. A 64 Gbit/s data signal is successfully transmitted over 160 km with an optical bandwidth of 5.4 GHz.

  • In Situ Observation of Reduction Behavior of Cytochrome c Adsorbed on Glass Surface by Slab Optical Waveguide Spectroscopy

    Naoki MATSUDA  Hirotaka OKABE  Masaki FUJII  Masayoshi MATSUI  Yusuke AYATO  Akiko TAKATSU  Kenji KATO  

     
    PAPER

      Vol:
    E94-C No:2
      Page(s):
    170-175

    In situ observation of the adsorption process and the states of cytochrome c on glass/solution interfaces, and the functionality of the reduction reaction of adsorbed cytochorome c were performed by using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of cytochorome c adsorbed on a bare glass surface was almost the same as that of that in solution. The cytochorome c adsorbed on glass/solution interface was reduced by sodium dithionite solution. The adsorbed cytochorome c was still maintained its functionality after immobilization.

481-500hit(1274hit)