The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SiON(4624hit)

301-320hit(4624hit)

  • Generation of Large-Amplitude Pulses through the Pulse Shortening Superposed in Series-Connected Tunnel-Diode Transmission Line

    Koichi NARAHARA  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2021/02/08
      Vol:
    E104-C No:8
      Page(s):
    394-397

    A scheme is proposed for generation of large-amplitude short pulses using a transmission line with regularly spaced series-connected tunnel diodes (TDs). In the case where the loaded TD is unique, it is established that the leading edge of the inputted pulse moves slower than the trailing edge, when the pulse amplitude exceeds the peak voltage of the loaded TD; therefore, the pulse width is autonomously reduced through propagation in the line. In this study, we find that this property is true even when the several series-connected TDs are loaded periodically. By these mechanisms, the TD line succeeds in generating large and short pulses. Herein, we clarify the design criteria of the TD line, together with both numerical and experimental validation.

  • An Algebraic Approach to Verifying Galois-Field Arithmetic Circuits with Multiple-Valued Characteristics

    Akira ITO  Rei UENO  Naofumi HOMMA  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1083-1091

    This study presents a formal verification method for Galois-field (GF) arithmetic circuits with the characteristics of more than two values. The proposed method formally verifies the correctness of circuit functionality (i.e., the input-output relations given as GF-polynomials) by checking the equivalence between a specification and a gate-level netlist. We represent a netlist using simultaneous algebraic equations and solve them based on a novel polynomial reduction method that can be efficiently applied to arithmetic over extension fields $mathbb{F}_{p^m}$, where the characteristic p is larger than two. By using the reverse topological term order to derive the Gröbner basis, our method can complete the verification, even when a target circuit includes bugs. In addition, we introduce an extension of the Galois-Field binary moment diagrams to perform the polynomial reductions faster. Our experimental results show that the proposed method can efficiently verify practical $mathbb{F}_{p^m}$ arithmetic circuits, including those used in modern cryptography. Moreover, we demonstrate that the extended polynomial reduction technique can enable verification that is up to approximately five times faster than the original one.

  • Mutual Information Approximation Based Polar Code Design for 4Tb/in2 2D-ISI Channels

    Lingjun KONG  Haiyang LIU  Jin TIAN  Shunwai ZHANG  Shengmei ZHAO  Yi FANG  

     
    LETTER-Coding Theory

      Pubricized:
    2021/02/16
      Vol:
    E104-A No:8
      Page(s):
    1075-1079

    In this letter, a method for the construction of polar codes based on the mutual information approximation (MIA) is proposed for the 4Tb/in2 two-dimensional inter-symbol interference (2D-ISI) channels, such as the bit-patterned magnetic recording (BPMR) and two-dimensional magnetic recording (TDMR). The basic idea is to exploit the MIA between the input and output of a 2D detector to establish a log-likelihood ratio (LLR) distribution model based on the MIA results, which compensates the gap caused by the 2D ISI channel. Consequently, the polar codes obtained by the optimization techniques previously developed for the additive white Gaussian noise (AWGN) channels can also have satisfactory performances over 2D-ISI channels. Simulated results show that the proposed polar codes can outperform the polar codes constructed by the traditional methods over 4Tb/in2 2D-ISI channels.

  • Real-Time Full-Band Voice Conversion with Sub-Band Modeling and Data-Driven Phase Estimation of Spectral Differentials Open Access

    Takaaki SAEKI  Yuki SAITO  Shinnosuke TAKAMICHI  Hiroshi SARUWATARI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/04/16
      Vol:
    E104-D No:7
      Page(s):
    1002-1016

    This paper proposes two high-fidelity and computationally efficient neural voice conversion (VC) methods based on a direct waveform modification using spectral differentials. The conventional spectral-differential VC method with a minimum-phase filter achieves high-quality conversion for narrow-band (16 kHz-sampled) VC but requires heavy computational cost in filtering. This is because the minimum phase obtained using a fixed lifter of the Hilbert transform often results in a long-tap filter. Furthermore, when we extend the method to full-band (48 kHz-sampled) VC, the computational cost is heavy due to increased sampling points, and the converted-speech quality degrades due to large fluctuations in the high-frequency band. To construct a short-tap filter, we propose a lifter-training method for data-driven phase reconstruction that trains a lifter of the Hilbert transform by taking into account filter truncation. We also propose a frequency-band-wise modeling method based on sub-band multi-rate signal processing (sub-band modeling method) for full-band VC. It enhances the computational efficiency by reducing sampling points of signals converted with filtering and improves converted-speech quality by modeling only the low-frequency band. We conducted several objective and subjective evaluations to investigate the effectiveness of the proposed methods through implementation of the real-time, online, full-band VC system we developed, which is based on the proposed methods. The results indicate that 1) the proposed lifter-training method for narrow-band VC can shorten the tap length to 1/16 without degrading the converted-speech quality, and 2) the proposed sub-band modeling method for full-band VC can improve the converted-speech quality while reducing the computational cost, and 3) our real-time, online, full-band VC system can convert 48 kHz-sampled speech in real time attaining the converted speech with a 3.6 out of 5.0 mean opinion score of naturalness.

  • Online Collaborative Kit-Build Concept Map: Learning Effect and Conversation Analysis in Collaborative Learning of English as a Foreign Language Reading Comprehension

    Aryo PINANDITO  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    PAPER-Educational Technology

      Pubricized:
    2021/04/06
      Vol:
    E104-D No:7
      Page(s):
    981-991

    Concept map has been widely used as an interactive media to deliver contents in learning. Incorporating concept maps into collaborative learning could promote more interactive and meaningful learning environments. Furthermore, delivering concept maps in a digital form, such as in Kit-Build concept map, could improve learning interaction further. Collaborative learning with Kit-Build concept map has been shown to have positive effects on students' understanding. The way students compose their concept maps while discussing with others is presumed to affect their learning. However, supporting collaborative learning in an online setting is formidable to keep the interaction meaningful and fluid. This study proposed a new approach of real-time collaborative learning with Kit-Build concept map. This study also investigated how concept map recomposition with Kit-Build concept map could help students collaboratively learn EFL reading comprehension from a distance by comparing it with the traditional open-ended concept mapping approach. The learning effect and students' conversation during collaboration with the proposed online Kit-Build concept map system were investigated. Comparative analysis with a traditional collaborative concept mapping approach is also presented. The results suggested that collaborative learning with Kit-Build concept map yielded better outcomes and more meaningful discussion than the traditional open-end concept mapping.

  • Distributed Detection of MIMO Spatial Multiplexed Signals in Terminal Collaborated Reception

    Fengning DU  Hidekazu MURATA  Mampei KASAI  Toshiro NAKAHIRA  Koichi ISHIHARA  Motoharu SASAKI  Takatsune MORIYAMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/29
      Vol:
    E104-B No:7
      Page(s):
    884-892

    Distributed detection techniques of multiple-input multiple-output (MIMO) spatially multiplexed signals are studied in this paper. This system considered employs multiple mobile stations (MSs) to receive signals from a base station, and then share their received signal waveforms with collaborating MSs. In order to reduce the amount of traffic over the collaborating wireless links, distributed detection techniques are proposed, in which multiple MSs are in charge of detection by making use of both the shared signal waveforms and its own received waveform. Selection combining schemes of detected bit sequences are studied to finalize the decisions. Residual error coefficients in iterative MIMO equalization and detection are utilized in this selection. The error-ratio performance is elucidated not only by computer simulations, but also by offline processing using experimental signals recorded in a measurement campaign.

  • Design Method for Differential Rectifier Circuit Capable of Rapidly Charging Storage Capacitor

    Daiki FUJII  Masaya TAMURA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/12/04
      Vol:
    E104-C No:7
      Page(s):
    355-362

    This study proposes a design method for a rectifier circuit that can be rapidly charged by focusing on the design-load value of the circuit and the load fluctuation of a storage capacitor. The design-load value is suitable for rapidly charging the capacitor. It can be obtained at the lowest reflection condition and estimated according to the circuit design. This is a conventional method for designing the rectifier circuit using the optimum load. First, we designed rectifier circuits for the following three cases. The first circuit design uses a load set to 10 kΩ. The second design uses a load of 30 kΩ that is larger than the optimum load. The third design utilizes a load of 3 kΩ. Then, we measure the charging time to design the capacitor on each circuit. Consequently, the results show that the charge time could be shortened by employing the design-load value lower than that used in the conventional design. Finally, we discuss herein whether this design method can be applied regardless of the rectifier circuit topology.

  • Exposure Fusion Using a Relative Generative Adversarial Network

    Jinhua WANG  Xuewei LI  Hongzhe LIU  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2021/03/24
      Vol:
    E104-D No:7
      Page(s):
    1017-1027

    At present, the generative adversarial network (GAN) plays an important role in learning tasks. The basic idea of a GAN is to train the discriminator and generator simultaneously. A GAN-based inverse tone mapping method can generate high dynamic range (HDR) images corresponding to a scene according to multiple image sequences of a scene with different exposures. However, subsequent tone mapping algorithm processing is needed to display it on a general device. This paper proposes an end-to-end multi-exposure image fusion algorithm based on a relative GAN (called RaGAN-EF), which can fuse multiple image sequences with different exposures directly to generate a high-quality image that can be displayed on a general device without further processing. The RaGAN is used to design the loss function, which can retain more details in the source images. In addition, the number of input image sequences of multi-exposure image fusion algorithms is often uncertain, which limits the application of many existing GANs. This paper proposes a convolutional layer with weights shared between channels, which can solve the problem of variable input length. Experimental results demonstrate that the proposed method performs better in terms of both objective evaluation and visual quality.

  • Efficient Data Diffusion and Elimination Control Method for Spatio-Temporal Data Retention System Open Access

    Shumpei YAMASAKI  Daiki NOBAYASHI  Kazuya TSUKAMOTO  Takeshi IKENAGA  Myung J. LEE  

     
    PAPER

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    805-816

    With the development and spread of Internet of Things technologies, various types of data for IoT applications can be generated anywhere and at any time. Among such data, there are data that depend heavily on generation time and location. We define these data as spatio-temporal data (STD). In previous studies, we proposed a STD retention system using vehicular networks to achieve the “Local production and consumption of STD” paradigm. The system can quickly provide STD for users within a specific location by retaining the STD within the area. However, this system does not take into account that each type of STD has different requirements for STD retention. In particular, the lifetime of STD and the diffusion time to the entire area directly influence the performance of STD retention. Therefore, we propose an efficient diffusion and elimination control method for retention based on the requirements of STD. The results of simulation evaluation demonstrated that the proposed method can satisfy the requirements of STD, while maintaining a high coverage rate in the area.

  • Routing and Capacity Optimization Based on Estimated Latent OD Traffic Demand

    Takumi UCHIDA  Keisuke ISHIBASHI  Kensuke FUKUDA  

     
    PAPER

      Pubricized:
    2021/01/29
      Vol:
    E104-B No:7
      Page(s):
    781-790

    This paper introduces a method to estimate latent traffic from its origin to destination from the link packet loss rate and traffic volume. In addition, we propose a method for the joint optimization of routing and link provisioning based on the estimated latent traffic. Observed traffic could deviate from the original traffic demand and become latent when the traffic passes through congested links because of changes in user behavioral and/or applications as a result of degraded quality of experience (QoE). The latent traffic is actualized by improving congested link capacity. When link provisioning is based on observed traffic, actual traffic might cause new congestion at other links. Thus, network providers need to estimate the origin-destination (OD) original traffic demand for network planning. Although the estimation of original traffic has been well studied, the estimation was only applicable for links. In this paper, we propose a method to estimate latent OD traffic by combining and expanding techniques. The method consists of three steps. The first step is to estimate the actual OD traffic and loss rate from the actual traffic and packet loss rate of the links. The second step is to estimate the latent traffic demand. Finally, using this estimated demand, the link capacity and routing matrix are optimized. We evaluate our method by simulation and confirm that congestion could be avoided by capacity provisioning based on estimated latent traffic, while provisioning based on observed traffic retains the congestion. The combined method can avoid congestion with an increment of 23% compared with capacity provisioning only. We also evaluated our method's adaptability, i.e., the ability to estimate the required parameter for the estimations using fewer given values, but values obtained in the environment.

  • Estimation of Semantic Impressions from Portraits

    Mari MIYATA  Kiyoharu AIZAWA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2021/03/18
      Vol:
    E104-D No:6
      Page(s):
    863-872

    In this paper, we present a novel portrait impression estimation method using nine pairs of semantic impression words: bitter-majestic, clear-pure, elegant-mysterious, gorgeous-mature, modern-intellectual, natural-mild, sporty-agile, sweet-sunny, and vivid-dynamic. In the first part of the study, we analyzed the relationship between the facial features in deformed portraits and the nine semantic impression word pairs over a large dataset, which we collected by a crowdsourcing process. In the second part, we leveraged the knowledge from the results of the analysis to develop a ranking network trained on the collected data and designed to estimate the semantic impression associated with a portrait. Our network demonstrated superior performance in impression estimation compared with current state-of-the-art methods.

  • Highly Reliable Radio Access Scheme by Duplicate Transmissions via Multiple Frequency Channels and Suppressed Useless Transmission under Interference from Other Systems

    Hideya SO  Takafumi FUJITA  Kento YOSHIZAWA  Maiko NAYA  Takashi SHIMIZU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/12/04
      Vol:
    E104-B No:6
      Page(s):
    696-704

    This paper proposes a novel radio access scheme that uses duplicated transmission via multiple frequency channels to achieve mission critical Internet of Things (IoT) services requiring highly reliable wireless communications; the interference constraints that yield the required reliability are revealed. To achieve mission critical IoT services by wireless communication, it is necessary to improve reliability in addition to satisfying the required transmission delay time. Reliability is defined as the packet arrival rate without exceeding the desired transmission delay time. Traffic of the own system and interference from the other systems using the same frequency channel such as unlicensed bands degrades the reliability. One solution is the frequency/time diversity technique. However, these techniques may not achieve the required reliability because of the time taken to achieve the correct reception. This paper proposes a novel scheme that transmits duplicate packets utilizing multiple wireless interfaces over multiple frequency channels. It also proposes a suppressed duplicate transmission (SDT) scheme, which prevents the wastage of radio resources. The proposed scheme achieves the same reliable performance as the conventional scheme but has higher tolerance against interference than retransmission. We evaluate the relationship between the reliability and the occupation time ratio where the interference occupation time ratio is defined as the usage ratio of the frequency resources occupied by the other systems. We reveal the upper bound of the interference occupation time ratio for each frequency channel, which is needed if channel selection control is to achieve the required reliability.

  • Occlusion Avoidance Behavior During Gazing at a Rim Drawn by Blue-Yellow Opposite Colors

    Miho SHINOHARA  Yukina TAMURA  Shinya MOCHIDUKI  Hiroaki KUDO  Mitsuho YAMADA  

     
    LETTER

      Pubricized:
    2020/12/15
      Vol:
    E104-A No:6
      Page(s):
    897-901

    We investigated the function in the Lateral Geniculate Nucleus of avoidance behavior due to the inconsistency between binocular retinal images due to blue from vergence eye movement based on avoidance behavior caused by the inconsistency of binocular retinal images when watching the rim of a blue-yellow equiluminance column.

  • A Modified Whale Optimization Algorithm for Pattern Synthesis of Linear Antenna Array

    Wentao FENG  Dexiu HU  

     
    LETTER-Numerical Analysis and Optimization

      Pubricized:
    2020/11/09
      Vol:
    E104-A No:5
      Page(s):
    818-822

    A modified whale optimization algorithm (MWOA) with dynamic leader selection mechanism and novel population updating procedure is introduced for pattern synthesis of linear antenna array. The current best solution is dynamic changed for each whale agent to overcome premature with local optima in iteration. A hybrid crossover operator is embedded in original algorithm to improve the convergence accuracy of solution. Moreover, the flow of population updating is optimized to balance the exploitation and exploration ability. The modified algorithm is tested on a 28 elements uniform linear antenna array to reduce its side lobe lever and null depth lever. The simulation results show that MWOA algorithm can improve the performance of WOA obviously compared with other algorithms.

  • Spatial Single Dimensional Mode Based De-Multiplexer Using Slab Waveguide

    Haisong JIANG  Mahmoud NASEF  Kiichi HAMAMOTO  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2020/10/19
      Vol:
    E104-C No:5
      Page(s):
    164-167

    This paper reports a single dimensional mode based multiplexer / de-multiplexer using the slab waveguide to realize high modes multiplexing and high integration in the non-MIMO (multi-in multi-out) multimode transmission system. A sufficient mode crosstalk of -20 dB was obtained by selecting suitable parameters of the spacing between the connecting positions of each arrayed waveguide Di, the radius slab waveguide R0 and lateral V-parameter.

  • Efficient Hardware Accelerator for Compressed Sparse Deep Neural Network

    Hao XIAO  Kaikai ZHAO  Guangzhu LIU  

     
    LETTER-Computer System

      Pubricized:
    2021/02/19
      Vol:
    E104-D No:5
      Page(s):
    772-775

    This work presents a DNN accelerator architecture specifically designed for performing efficient inference on compressed and sparse DNN models. Leveraging the data sparsity, a runtime processing scheme is proposed to deal with the encoded weights and activations directly in the compressed domain without decompressing. Furthermore, a new data flow is proposed to facilitate the reusage of input activations across the fully-connected (FC) layers. The proposed design is implemented and verified using the Xilinx Virtex-7 FPGA. Experimental results show it achieves 1.99×, 1.95× faster and 20.38×, 3.04× more energy efficient than CPU and mGPU platforms, respectively, running AlexNet.

  • Improved LEACH-M Protocol for Processing Outlier Nodes in Aerial Sensor Networks

    Li TAN  Haoyu WANG  Xiaofeng LIAN  Jiaqi SHI  Minji WANG  

     
    PAPER-Network

      Pubricized:
    2020/11/05
      Vol:
    E104-B No:5
      Page(s):
    497-506

    As the nodes of AWSN (Aerial Wireless Sensor Networks) fly around, the network topology changes frequently with high energy consumption and high cluster head mortality, and some sensor nodes may fly away from the original cluster and interrupt network communication. To ensure the normal communication of the network, this paper proposes an improved LEACH-M protocol for aerial wireless sensor networks. The protocol is improved based on the traditional LEACH-M protocol and MCR protocol. A Cluster head selection method based on maximum energy and an efficient solution for outlier nodes is proposed to ensure that cluster heads can be replaced prior to their death and ensure outlier nodes re-home quickly and efficiently. The experiments show that, compared with the LEACH-M protocol and MCR protocol, the improved LEACH-M protocol performance is significantly optimized, increasing network data transmission efficiency, improving energy utilization, and extending network lifetime.

  • Comprehensive Feasibility Study on Direct Spectrum Division Transmission over Multiple Satellite Transponders

    Fumihiro YAMASHITA  Daisuke GOTO  Yasuyoshi KOJIMA  Jun-ichi ABE  Takeshi ONIZAWA  

     
    PAPER-Satellite Communications

      Pubricized:
    2020/10/22
      Vol:
    E104-B No:4
      Page(s):
    446-454

    We have developed a direct spectrum division transmission (DSDT) technique that can divide a single-carrier signal into multiple sub-spectra and assign them to dispersed frequency resources of the satellite transponder to improve the spectrum efficiency of the whole system. This paper summarizes the satellite experiments on DSDT over a single and/or multiple satellite transponders, while changing various parameters such as modulation schemes, roll-off ratios, and symbol rates. In addition, by considering practical use conditions, we present an evaluation of the performance when the spectral density of each sub-spectrum differed across transponders. The satellite experiments demonstrate that applying the proposal does not degrade the bit error rate (BER) performance. Thus, the DSDT technique is a practical approach to use the scattered unused frequency resources over not only a single transponder but also multiple ones.

  • A PAPR Reduction Technique for OFDM Systems Using Phase-Changed Peak Windowing Method

    Xiaoran CHEN  Xin QIU  Xurong CHAI  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/09/04
      Vol:
    E104-A No:3
      Page(s):
    627-631

    Orthogonal frequency division multiplexing (OFDM) technique has been widely used in communication systems in pursuit of the most efficient utilization of spectrum. However, the increase of the number of orthogonal subcarriers will lead to the rise of the peak-to-average power ratio (PAPR) of the waveform, thus reducing the efficiency of the power amplifiers. In this letter we propose a phase-changed PAPR reduction technique based on windowing function architecture for OFDM systems. This technique is based on the idea of phase change, which makes the spectrum of output signal almost free of regrowth caused by peak clipping. It can reduce more than 28dBc adjacent channel power ratio (ACPR) compared with the traditional peak windowing clipping methods in situation that peak is maximally suppressed. This technique also has low algorithm complexity so it can be easily laid out on hardware. The proposed algorithm has been laid out on a low-cost field-programmable gate array (FPGA) to verify its effectiveness and feasibility. A 64-QAM modulated 20M LTE-A waveform is used for measurement, which has a sampling rate of 245.67M.

  • Geolocation-Centric Information Platform for Resilient Spatio-temporal Content Management Open Access

    Kazuya TSUKAMOTO  Hitomi TAMURA  Yuzo TAENAKA  Daiki NOBAYASHI  Hiroshi YAMAMOTO  Takeshi IKENAGA  Myung LEE  

     
    INVITED PAPER-Network

      Pubricized:
    2020/09/11
      Vol:
    E104-B No:3
      Page(s):
    199-209

    In IoT era, the growth of data variety is driven by cross-domain data fusion. In this paper, we advocate that “local production for local consumption (LPLC) paradigm” can be an innovative approach in cross-domain data fusion, and propose a new framework, geolocation-centric information platform (GCIP) that can produce and deliver diverse spatio-temporal content (STC). In the GCIP, (1) infrastructure-based geographic hierarchy edge network and (2) adhoc-based STC retention system are interplayed to provide both of geolocation-awareness and resiliency. Then, we discussed the concepts and the technical challenges of the GCIP. Finally, we implemented a proof-of-concepts of GCIP and demonstrated its efficacy through practical experiments on campus IPv6 network and simulation experiments.

301-320hit(4624hit)