The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SiON(4624hit)

4161-4180hit(4624hit)

  • Linear Predictive Transmission Diversity for TDMA/TDD Personal Communication Systems

    Yasushi KONDO  Keisuke SUWA  

     
    PAPER-Mobile Communication

      Vol:
    E79-B No:10
      Page(s):
    1586-1591

    This paper proposes linear predictive transmission diversity for TDMA/TDD personal communication systems and evaluates the effects of fading correlation and unequal average signal power Rayleigh fading on these system. The average bit error rate (BER) performance is calculated by computer simulation and the BER of zero order prediction is theoretically analyzed. The performance degradation caused by the error from prediction, fading correlation, and unequal average signal power is found to be almost independent of each other.

  • Notes on the Average Binary Weight Enumerator of Generalized Algebraic-Geometric Codes

    Takeshi UMEDA  Katsumi SAKAKIBARA  Masao KASAHARA  

     
    LETTER-Coding Theory

      Vol:
    E79-A No:9
      Page(s):
    1444-1446

    It is shown that most of the binary images of generalized algebraic-geometric codes meet the Varshamov-Gilbert bound from the viewpoint of the average binary weight enumerator.

  • Analysis of Nonuniform and Nonlinear Transmission lines via Frequency-Domain Technique

    Yuichi TANJI  Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Nonlinear Problems

      Vol:
    E79-A No:9
      Page(s):
    1486-1494

    There are many kinds of transmission lines such as uniform, nonuniform and nonlinear ones terminated by linear and/or nonlinear subnetworks. The nonuniform transmission lines are crucial in integrated circuits and printed circuit boards, because these circuits have complex geometries and layout between the multi layers, and most of the transmission lines possess nonuniform characteristics. On the other hand, the nonlinear transmission line have been focused in the fields of communication and instrumentation. Here, we present a new numerical method for analyzing nonuniform and nonlinear transmission lines with linear and/or nonlinear terminations. The waveforms at any points along the lines are described by the Fourier expansions. The partial differential equations representing the circuit are transformed into a set of ordinary differential equations at each frequency component, where for nonlinear transmission line, the perturbation technique is applied. The method is efficiently applied to weakly nonlinear transmission line. The nonuniform transmission lines terminated by a nonlinear subnetwork are analyzed by hybrid frequency-domain method. The stability for stiff circuit is improved by introducing compensation element. The efficiency of our method is illustrated by some examples.

  • 3-D Shape Reconstruction from Endoscope Image Sequences by The Factorization Method

    Koichiro DEGUCHI  Tsuyoshi SASANO  Himiko ARAI  Hiroshi YOSHIKAWA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:9
      Page(s):
    1329-1336

    A new application of the factorization method is reported for 3-D shape reconstruction from endoscope image sequences. The feasibility of the method is verified with some theoretical considerations and results of extensive experiments. This method was developed by Tomasi and Kanade, and improved by Poelman and Kanade, with the aim of achieving accurate shape reconstruction by using a large number of points and images, and robustly applying well-understood matrix computations. However, the latter stage of the method, called normalization, is not as easily understandable as the use of singular value decomposition in the first stage. In fact, as shown in this report, many choices are possible for this normalization and a variety of results have been obtained depending on the choice. This method is easy to understand, easy to implement, and provides sufficient accuracy when the approximation used for the optical system is reasonable. However, the details of the theoretical basis require further study.

  • Estimation of Two-Dimensional DOA under a Distributed Source Model and Some Simulation Results

    Seong Ro LEE  Iickho SONG  Yong Up LEE  Taejoo CHANG  Hyung-Myung KIM  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E79-A No:9
      Page(s):
    1475-1485

    Most research on the estimation of direction of arrival (DOA) has been performed based on the assumption that the signal sources are point sources. In some real surroundings, signal source localization can more adequately be accomplished with distributed source models. When the signal sources are distributed over an area, we cannot directly use well-known DOA estimation methods, because these methods are established based on the point source assumption. In this paper, we propose a 3-dimensional distributed signal source model, in which a source is represented by two parameters, the center angle and degree of dispersion. Then, we address the estimation of the elevation and azimuth angles of distributed sources based on the parametric distributed source modeling in the 3-dimensional space.

  • A Contour-Based Approach for Determining the Motion of 3-D Objects from a Sequence of Images

    Kazuho ITO  Kiyomi KANAZAWA  Yoshihiko SUZUKI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:9
      Page(s):
    1305-1316

    This paper addresses the problem of estimating 3-D motion of a rigid object from a sequence of monocular 2-D images. The surface of object is assumed to be modeled with several patches, each of which is expressed by an implicit equation. The proposed method estimates the pose (i.e., the location and orientation) of object that corresponds to each image in the sequence: The sequence of the estimated poses gives the motion of the object. The estimation is done by solving a system of equations, each of which is typically an algebraic equation of low degree, that is derived from the expressions of the surface patches and image contours data: so the method does not require establishing the correspondence between successive two frames in the image sequence or computing optic flow. Allowing several-patch models for objects enables the proposed approach to deal with a great variety of objects. The paper includes a numerical example, where our aproach has been applied to a polyhedral object modeled with several patches.

  • A Fast Neural Network Learning with Guaranteed Convergence to Zero System Error

    Teruo AJIMURA  Isao YAMADA  Kohichi SAKANIWA  

     
    PAPER-Stochastic Process/Learning

      Vol:
    E79-A No:9
      Page(s):
    1433-1439

    It is thought that we have generally succeeded in establishing learning algorithms for neural networks, such as the back-propagation algorithm. However two major issues remain to be solved. First, there are possibilities of being trapped at a local minimum in learning. Second, the convergence rate is too slow. Chang and Ghaffar proposed to add a new hidden node, whenever stopping at a local minimum, and restart to train the new net until the error converges to zero. Their method designs newly generated weights so that the new net after introducing a new hidden node has less error than that at the original local minimum. In this paper, we propose a new method that improves their convergence rate. Our proposed method is expected to give a lower system error and a larger error gradient magnitude than their method at a starting point of the new net, which leads to a faster convergence rate. Actually, it is shown through numerical examples that the proposed method gives a much better performance than the conventional Chang and Ghaffar's method.

  • Experiments on Coherent Multicode DS-CDMA

    Tomohiro DOHI  Yukihiko OKUMURA  Akihiro HIGASHI  Koji OHNO  Fumiyuki ADACHI  

     
    PAPER-CDMA and multiple access technologies

      Vol:
    E79-B No:9
      Page(s):
    1326-1332

    Direct sequence code division multiple access (DS-CDMA) is a promising candidate for 3rd generation mobile communications systems. We recently proposed a coherent multicode DS-CDMA (CM-CDMA) scheme that uses pilot symbol-aided coherent RAKE, interference power measurement based transmit power control, orthogonal multicode transmission, and concatenated channel coding. We have implemented a CM-CDMA test-bed for a series of laboratory and field tests using the 2 GHz band. This paper describes the test-bed system and experimental results are presented. It is confirmed that pilot symbol-aided coherent RAKE can reduce the required signal energy per bit-to-interference plus background noise spectrum density ratio (Eb/Io) by 2-3 dB from that achievable with differential detection. Also shown is that by using both RAKE combining and SIR-based power control the transmit power of mobile stations can be significantly reduced. Measurement results show that the required Eb/Io degrades only slightly when 24 code-channels (768 kbps) are used since orthogonal Gold sequences are used as short spreading codes.

  • A Note on Lempel-Ziv-Yokoo Algorithm

    Junya KIYOHARA  Tsutomu KAWABATA  

     
    LETTER-Source Coding

      Vol:
    E79-A No:9
      Page(s):
    1460-1463

    We study Lempel-Ziv-Yokoo algorithm [1, Algorithm 4] for universal data compression. In this paper, we give a simpler implementation of Lempel-Ziv-Yokoo algorithm than the original one [1, Algorithm 4] and show its asymptotic optimality for a stationary ergodic source.

  • Compression Coding Using an Optical Model for a Pair of Range and Grey-Scale Images of 3D Objects

    Kefei WANG  Ryuji KOHNO  

     
    PAPER-Source Coding/Security

      Vol:
    E79-A No:9
      Page(s):
    1330-1337

    When an image of a 3D object is transmitted or recorded, its range image as well its grey-scale image are required. In this paper, we propose a method of coding for efficient compression of a pair of a pair of range and grey-scale images of 3D objects. We use Lambertian reflection optical model to model the relationship between a 3D object shape and it's brightness. Good illuminant direction estimation leads to good grey-scale image generation and furthermore effects compression results. A method for estimating the illuminant derection and composite albedo from grey-scale image statistics is presented. We propose an approach for estimating the slant angle of illumination based on an optical model from a pair of range and grey-scale images. Estimation result shows that our approach is better. Using the estimated parameters of illuminant direction and composite albedo a synthetic grey-scale image is generated. For comparison, a comparison coding method is used, in which we assume that the range and grey-scale images are compressed separately. We propose an efficient compression coding method for a pair of range and grey-scale images in which we use the correlation between range and grey-scale images, and compress them together. We also evaluate the coding method on a workstation and show numerical results.

  • A Performance of Selective-Repeat ARQ with Cyclical Multicopy Retransmission

    Hirokazu TANAKA  

     
    PAPER-Communication/Spread Spectrum

      Vol:
    E79-A No:9
      Page(s):
    1386-1391

    For mobile/personal satellite systems, an ARQ protocol with low transmitter/receiver complexity as well as high throughput performance in a long Round-Trip-Delay (RTD) and even in a bad channel condition is required. In this paper, a new Selective-Repeat (SR) ARQ with multicopy retransmission is proposed and a performance on an AWGN channel is analyzed. The proposed scheme can be viewed as a modified version for SR + Stutter (ST) Scheme 2 [6]. The basic idea of the strategy is to repeat only erroneous blocks stored in the vN block transmitter buffer multiple times, when v consecutive retransmissions in SR mode are received in error, where N denotes RTD in blocks. Numerical analysis and simuration results in the case of N block transmitter/receiver buffer show that the proposed scheme presents better performance than SR + ST scheme 2 of 2N block buffer, especially that the robustness in the high BER region is remarkable.

  • The Theoretical Foundation and Applications of Equivalent Transmission-Path Model for Assessing Wideband Digital Transmission Characteristics in Nakagami-Rice Fading Environments

    Hisato IWAI  Yoshio KARASAWA  

     
    PAPER-Radio propagation and channel modeling

      Vol:
    E79-B No:9
      Page(s):
    1205-1214

    For Nakagami-Rice fading environment which seems to become a principle propagation environment in the next generation wideband and high-capacity mobile systems such as personal communications, we have previously proposed an approximated evaluation scheme for wideband digital transmission characteristics such as errors due to intersymbol interference of multipath waves. We called the scheme 'Equivalent Transmission-Path (ETP) Model.' In this paper, through a discussion about more general equivalent propagation channel expressions, we clarify a theoretical foundation of the ETP model and extend the model to have an ability of expression of instantaneous fading condition varying with time. Also the appropriateness of the instantaneous expression is examined by a computer simulation analysis. Based on this model, statistics of link quality and service availability in Nakagami-Rice fading environments are discussed.

  • Decoded Error Characteristics of Two-Pass APP Decoding

    Akira SHIOZAKI  Yukinori KANAYA  

     
    LETTER-Coding Theory

      Vol:
    E79-A No:9
      Page(s):
    1450-1452

    The performance of APP (a posteriori probability) decoding algorithm which is well known as a soft decision decoding algorithm for majority logic decodable codes is further improved by iterating the algorithm one or more times. This letter shows that there exists the optimal non-zero threshold value of the decision function that minimizes the decoded error rate in two-pass APP decoding though the optimal threshold value in one-pass APP decoding is zero.

  • Fast Frequency-Hopped MFSK with Multi-Antenna Transmission Diversity System for Indoor Radio Channel

    Jun PENG  Masao NAKAGAWA  

     
    PAPER-Indoor Wireless Systems

      Vol:
    E79-B No:9
      Page(s):
    1366-1370

    ISM band has been approved for spread spectrum communication in radio LAN in Japan since December 1992. This frequency band extends from 2.474 GHz to 2.5 GHz with 26 MHz bandwide. In an indoor environment, the maximum observed delay spread is 100-200 ns in a room, it is too short to generate a selective fading, thus flat fading conditions are often observed. Serve as an alleviation, we propose a new system of multi-antenna in base station (BS) and single antenna in mobile station (MS). In this system, MS should have a simple structure for its small size and energy-saving.

  • Dual Quantity of the Distortion-Complexity and a Universal Data-Base for Fixed-Rate Data Compression with Distortion

    Jun MURAMATSU  Fumio KANAYA  

     
    LETTER-Source Coding

      Vol:
    E79-A No:9
      Page(s):
    1456-1459

    In this paper, we define the distortion at a certain complexity level, which is the dual quantity of the distortion-complexity. We prove a theorem dual to the theorem which we have given of the asymptotic property of the distortion-complexity. We also give a universal data-base for fixed-rate data compression with distortion and prove its asymptotic optimality.

  • Fast FIR Digital Filter Structures Using Minimal Number of Adders and Its Application to Filter Design

    Mitsuhiko YAGYU  Akinori NISHIHARA  Nobuo FUJII  

     
    PAPER

      Vol:
    E79-A No:8
      Page(s):
    1120-1129

    This paper proposes fast FIR digital filter structures using the minimal number of adders. Filter coefficients are expressed with canonic signed digit (CSD) code and Hartley's technique is used to minimize the number of adders and subtractors. The proposed filters implemented as wired logic are fast because the structure having the shortest critical path is selected. Two algorithms are given to obtain such fast structures. In many examples the critical path length of the filter structures obtained using the proposed method is equal to that of the conventional CSD structures. This paper also presents a new design method of FIR filters using the mixed integer programming (MILP). Utilization of common expressions in Hartley's technique widens the CSD coefficient space. Thus the MILP may lead to better frequency responses. Superior frequency responses are actually obtained in many simulations.

  • A Fast Timing Recovery Method with a Decision Feedback Equalizer for Baudrate Sampling

    Akihiko SUGIYAMA  Tomokazu ITO  

     
    PAPER-Digital Signal Processing

      Vol:
    E79-A No:8
      Page(s):
    1267-1273

    This paper proposes a fast timing recovery method with a decision feedback equalizer for baudrate sampling. The proposed method features two special techniques. The first one is for coarse estimation of the sampling phase. Internal signals of the oversampled analog-to-digital converter at different phases are directly taken out for parallel evaluation. The second technique provides fine tuning with a phase-modification stepsize which is adaptively controlled by the residual intersymbol interference. Simulation results by a full-duplex digital transmission system with a multilevel line code show superiority of the proposed method. The coarse timing estimation and the fine tuning reduce 75% and 40% of the time required by the conventional method,respectively. The overall saving in timing recovery is almost 60% over the conventional method. The proposed method could easily be extended to other applications with a decision feedback equalizer.

  • Tissue Extraction from Ultrasonic Image by Prediction Filtering

    Atsushi TAKEMURA  Masayasu ITO  

     
    PAPER

      Vol:
    E79-A No:8
      Page(s):
    1194-1201

    An image obtained by ultrasonic medical equipment is poor in quality because of speckle noise, that is caused by the quality of ultrasonic beam and so on. Thus, it is very difficult to detect internal organs or the diseased tissues from a medical ultrasonic image by the processing, which is used only gray-scale of the image. To analyze the ultrasonic image, it is necessary to use not only gray-scale but also appropriate statistical character. In this paper, we suggest a new method to extract regions of internal organs from an ultrasonic image by the discrimination function. The discrimination function is based on gray-scale and statistical characters of the image. This function is determined by using parameters of the multi-dimensional autoregressive model.

  • An Architecture for Optical Ring Trunk-Transmission Networks

    Masahito TOMIZAWA  Yoshiaki YAMABAYASHI  Nobuyuki KAWASE  Yukio KOBAYASHI  

     
    PAPER-Optical Communication

      Vol:
    E79-B No:8
      Page(s):
    1121-1128

    This paper provides an architectural study of optical ring trunk-transmission networks using either Time Division Multiplexing (TDM) or Wavelength Division Multiplexing (WDM). A timeslot arrangement algorithm for distributed controlled TDM rings is proposed that minimizes the number of slots (wavelengths) required in bi-directional ring networks. This algorithm is applied in a straightforward manner to wavelength arrangement in WDM ring networks. The technique, characterized by timeslot (or wavelength) conversion, realizes common add/drop procedures in all Add/Drop Multiplexers (ADMs) when they are connected logically in a mesh topology. A self-healing algorithm is also proposed for network restoration. It offers good performance in terms of protection line-capacity, restoration delay, and survivability against multiple failures.

  • Spectrum-Adaptive Band-Limiting Technique for 3-D Non-orthogonal Sampling

    Kazuhiro OKURA  Toshiyuki YOSHIDA  Yoshinori SAKAI  

     
    PAPER

      Vol:
    E79-A No:8
      Page(s):
    1202-1209

    This paper proposes a three-dimensional (3-D) band-limiting technique for a conversion of Simple Cubic Sampling into Body-Centered Cubic Sampling. Based on spectral distribution of the original signal, the proposed method adaptively varies the passband shape of a band-limiting filter in order to preserve informations of the original picture. By applying this method to 3-D moving pictures, we can preserve resolution on each axis without introducing heavy aliasing error and avoid degradation of picture quality such as ringing in still pictures or blurring in moving pictures. The examples given in this paper demonstrate these advantages.

4161-4180hit(4624hit)