The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SiON(4624hit)

4081-4100hit(4624hit)

  • Analysis of Decorrelating Decision-Feedback Multi-User Detectors for CDMA Systems

    Seung Hoon SHIN  Kwang Jae LIM  Kyung Sup KWAK  

     
    PAPER

      Vol:
    E80-A No:6
      Page(s):
    1055-1061

    Several multiuser detectors have been recently proposed to combat multiple-access interference and near-far problem for CDMA systems. The performance of a multi-user receiver in combining the decorrelating decision-feedback scheme for a synchronous DS/CDMA system is considered. Using the Gaussian approximation on the multiple-access interference and amplitude estimation errors, we derive a closed form expression for the BER performance of the decorrelating decision-feedback detector in single-path Rayleigh fading channel and power controlled system. And, we show that our analysis agrees with the results of simulations. A modified decision-feedback detector is also proposed and analyzes. Numerical results show that the modified dicision-feedback detector proposed in this paper results in enhanced performance.

  • 2-D Pipelined Adaptive Filters Based on 2-D Delayed LMS Algorithm

    Katsushige MATSUBARA  Kiyoshi NISHIKAWA  Hitoshi KIYA  

     
    PAPER

      Vol:
    E80-A No:6
      Page(s):
    1009-1014

    A pipelined adaptive digital filter (ADF) architecture based on a two-dimensional least mean square algorithm is proposed. This architecture enables the ADF to be operated at a high clock rate and reduction of the required amount of hardware. To achieve this reduction we introduce a new building unit, called a block, and propose implementing the pipelined ADF using the block, Since the number of blocks in a cell is adjustable, we derive a condition for satisfying given specifications. We show the smallest number of blocks and the corresponding delay can be determined by using the proposed method.

  • An Improved Bound for the Dimension of Subfield Subcodes

    Tomoharu SHIBUYA  Ryutaroh MATSUMOTO  Kohichi SAKANIWA  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E80-A No:5
      Page(s):
    876-880

    In this paper, we give a new lower bound for the dimension of subfield subcodes. This bound improves the lower bound given by Stichtenoth. A BCH code and a subfield subcode of algebraic geometric code on a hyper elliptic curve are discussed as special cases.

  • Wide-Angle Coupling to Multi-Mode Interference DevicesA Novel Concept for Compacting Photonic Integrated Circuits

    Martin BOUDA  Yoshiaki NAKANO  Kunio TADA  

     
    PAPER

      Vol:
    E80-C No:5
      Page(s):
    640-645

    Extremely compact multi-mode interference (MMI) devices using central wide-angle coupling of input and output waveguides are proposed. It is shown that MMI can be used to change the propagation direction of light without the need for corner mirrors or bent waveguides. The concept can also be used for very compact power splitters which are even smaller than conventional MMI power splitters. Coupling between waveguides at wide angles is discussed and a number of regularities are found. The results can be useful for the design of more compact integrated circuits by a reduction of the number of bent waveguides which usually take up the largest part of the area of a photonic integrated circuit.

  • 1616 Two-Dimensional Optoelectronic Integrated Receiver Array for Highly Parallel Interprocessor Networks

    Hiroshi YANO  Sosaku SAWADA  Kentaro DOGUCHI  Takashi KATO  Goro SASAKI  

     
    PAPER-Optoelectronic Integrated Receivers

      Vol:
    E80-C No:5
      Page(s):
    689-694

    A two-dimensional receiver OEIC array having an address selector for highly parallel interprocessor networks has been realized. The receiver OEIC array consists of two-dimensionally arranged 1616 (256) optical receiver cells with switching transistors, address selectors (decoders), and a comparator. Each optical receiver comprises a pin PD and a transimpedance-type HBT amplifier. The HBT has an InP passivation structure to suppress the emitter-size effect, which results in the improvement of current gains, especially at low collector current densities. The receiver OEIC array was fabricated on a 3-inch diameter InP substrate with pin/HBT integration technology. Due to the function of address selection, only one cell is activated and the other cells are mute, so the receiver OEIC array shows low crosstalk and low power consumption characteristics. The array also shows a 266-Mb/s data transmission capability. This receiver OEIC array is a most complex InP-based OEIC ever reported. The realization of the two-dimensional receiver OEIC array promises the future interprocessor networks with highly parallel optical interconnections.

  • Conjugate Gradient Projection onto Convex Sets for Sparse Array Acoustic Holography

    Kenbu TERAMOTO  

     
    PAPER

      Vol:
    E80-A No:5
      Page(s):
    833-839

    This paper describes a novel image reconstruction algorithm and experimental results of a 3-dimensional acoustical holographic imaging system which has a limited number of transducers distributed sparsely. The proposed algorithm is based on the conjugate gradient projection onto convex sets (CGPOCS), which allows the addition of convex sets constrained by a priori information to reduce ambiguity and extract resolution iteratively. By several experiments, it is proven that the concept of the new 3-D acoustic image reconstruction algorithm has following improvements:1. the artifacts caused by the spurious lobes can be reduced under the condition that the inter-spacing of elements is larger than the wave length,2. the instability caused by the lack of information about the actual point spread function (PSF) can be reduced,3. the actual PSF can be estimated concurrently with during the image reconstruction process.

  • On Dimension Estimates with Surrogate Data Sets

    Tohru IKEGUCHI  Kazuyuki AIHARA  

     
    PAPER-Nonlinear Problems

      Vol:
    E80-A No:5
      Page(s):
    859-868

    In this paper, we propose a new strategy of estimating correlation dimensions in combination with the method of surrogate data, which is a kind of statistical control usually introduced to avoid spurious estimates of nonlinear statistics, such as fractal dimensions, Lyapunov exponents and so on. In the case of analyzing time series with the method of surrogate data, it is desirable to decide values of estimated nonlinear statistics of the original data and surrogate data sets as exactly as possible. However, when dimensional analysis is applied to possible attractors reconstructed from real time series, it is very dangerous to decide a single value as the estimated dimensions and desirable to analyze its scaling property for avoiding spurious estimates. In order to solve this defficulty, a dimension estimator algorithm and the method of surrogate data are combined by introducing Monte Carlo hypothesis testing. In order to show effectiveness of the new strategy, firstly artificial time series are analyzed, such as the Henon map with additive noise, filtered random numbers and filtered random numbers transformed by a static monotonic nonlinearity, and then experimental time series are also examined, such as wolfer's sunspot numbers and the fluctuations in a farinfrared laser data.

  • Wavelength Division Multi/Demultiplexer with Arrayed Waveguide Grating

    Hisato UETSUKA  Kenji AKIBA  Kenichi MOROSAWA  Hiroaki OKANO  Satoshi TAKASUGI  Kimio INABA  

     
    PAPER

      Vol:
    E80-C No:5
      Page(s):
    619-624

    Recently, a wavelength division multi/demultiplexing system has been viewed with keen interest because it is possible to increase the transmission capacity and system flexibility. An arrayed waveguide grating (AWG) type of Multi/demultiplexer which is one of the key components to realize such a system has been developed by using Planar Lightwave Circuits (PLCs). Newly designed optical circuits have been incorporated into the AWG to control the center wavelength and to expand the pass band width. The 3 dB pass band width is 1.4 times that of a conventional AWG. It is confirmed that the newly developed AWG has low polarization dependence, low temperature dependence and high reliability.

  • Phased-Array-Based Photonic Integrated Circuits for Wavelength Division Multiplexing Applications

    A.A.M.(Toine) STARING  Meint K. SMIT  

     
    INVITED PAPER-Semiconductor Devices, Circuits and Processing

      Vol:
    E80-C No:5
      Page(s):
    646-653

    Wavelength Division Multiplexing (WDM) technology provides many options to the design of flexible alloptical networks. To exploit these options to their full potential, Photonic Integrated Circuits (PICs) for wavelength routing and switching will be indispensable. One of the basic building blocks of such PICs is the planar phased-array (PHASAR) wavelength demultiplexer. The monolithic integration of PHASARs with photodetectors, amplifiers, and other waveguide-based (passive) components is discussed.

  • Reduction of Coupling between Two Wire Antennas Using a Slot

    Takehiro MORIOKA  Kazuhiro HIRASAWA  

     
    PAPER

      Vol:
    E80-B No:5
      Page(s):
    699-705

    The reduction of coupling between two wire antennas operating at different frequencies on an infinite ground plane is considered. An impedance loaded slot is introduced between the two antennas. A coupling coefficient and a transmission coefficient are used to evaluate the coupling behavior. It is found that by an appropriate choice of the slot length, location and load impedance the coupling coefficient can be reduced significantly. The problem is analyzed by the method of moments. Port parameters are used to relate a feed port, load ports on the two wire antennas and a load port on the slot. In so doing, a large amount of computation time is saved in calculating the antenna characteristics for various loads on the slot.

  • Vienna Fortran and the Path Towards a Standard Parallel Language

    Barbara M. CHAPMAN  Piyush MEHROTRA  Hans P. ZIMA  

     
    INVITED PAPER

      Vol:
    E80-D No:4
      Page(s):
    409-416

    Highly parallel scalable multiprocessing systems (HMPs) are powerful tools for solving large-scale scientific and engineering problems. However, these machines are difficult to program since algorithms must exploit locality in order to achieve high performance. Vienna Fortran was the first fully specified data-parallel language for HMPs that provided features for the specification of data distribution and alignment at a high level of abstraction. In this paper we outline the major elements of Vienna Fortran and compare it to High Performance Fortran (HPF), a de-facto standard in this area. A significant weakness of HPF is its lack of support for many advanced applications, which require irregular data distributions and dynamic load balancing. We introduce HPF +, an extension of HPF based on Vienna Fortran, that provides the required functionality.

  • Modular Array Structures for Design and Multiplierless Realization of Two-Dimensional Linear Phase FIR Digital Filters

    Saed SAMADI  Akinori NISHIHARA  Nobuo FUJII  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:4
      Page(s):
    722-736

    It is shown that two-dimensional linear phase FIR digital filters with various shapes of frequency response can be designed and realized as modular array structures free of multiplier coefficients. The design can be performed by judicious selection of two low order linear phase transfer functions to be used at each module as kernel filters. Regular interconnection of the modules in L rows and K columns conditioned with boundary coefficients 1, 0 and 1/2 results in higher order digital filters. The kernels should be chosen appropriately to, first, generate the desired shape of frequency response characteristic and, second, lend themselves to multiplierless realization. When these two requirements are satisfied, the frequency response can be refined to possess narrower transition bands by adding additional rows and columns. General properties of the frequency response of the array are investigated resulting in Theorems that serve as valuable tools towards appropriate selection of the kernels. Several design examples are given. The array structures enjoy several favorable features. Specifically, regularity and lack of multiplier coefficients makes it suitable for high-speed systolic VLSI implementation. Computational complexity of the structure is also studied.

  • Formulas on Orthogonal Functionals of Stochastic Binary Sequence

    Junichi NAKAYAMA  Lan GAO  

     
    LETTER-Information Theory and Coding Theory

      Vol:
    E80-A No:4
      Page(s):
    782-785

    This paper deals with an orthogonal functional expansion of a non-linear stochastic functional of a stationary binary sequence taking 1 with equal probability. Several mathematical formulas, such as multi-variate orthogonal polynomials, recurrence formula and generating function, are given in explicit form. A simple example of orthogonal functional expansion and stationary random seqence generated by the stationary binary sequence are discussed.

  • Numerical Perfomances of Recursive Least Squares and Predictor Based Least Squares: A Comparative Study

    Youhua WANG  Kenji NAKAYAMA  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:4
      Page(s):
    745-752

    The numerical properties of the recursive least squares (RLS) algorithm and its fast versions have been extensively studied. However, very few investigations are reported concerning the numerical behavior of the predictor based least squares (PLS) algorithms that provide the same least squares solutions as the RLS algorithm. This paper presents a comparative study on the numerical performances of the RLS and the backward PLS (BPLS) algorithms. Theoretical analysis of three main instability sources reported in the literature, including the overrange of the conversion factor, the loss of symmetry and the loss of positive definiteness of the inverse correlation matrix, has been done under a finite-precision arithmetic. Simulation results have confirmed the validity of our analysis. The results show that three main instability sources encountered in the RLS algorithm do not exist in the BPLS algorithm. Consequently, the BPLS algorithm provides a much more stable and robust numerical performance compared with the RLS algorithm.

  • Performance Analysis of Mobile Cellular Radio Systems with Two-Level Priority Reservation Handoff Procedure

    Qing-An ZENG  Kaiji MUKUMOTO  Akira FUKUDA  

     
    PAPER-Mobile Communication

      Vol:
    E80-B No:4
      Page(s):
    598-607

    In this paper, we propose a handoff scheme with two-level priority for the reservation of handoff request calls in mobile cellular radio systems. We assume two types of mobile subscribers with different distributions of moving speed, that is, users with low average moving speed (e.g., pedestrians) and high average moving speed (e.g., people in moving cars). A fixed number of channels in each cell are reserved exclusively for handoff request calls. Out of these number of channels, some are reserved exclusively for the high speed handoff request calls. The remaining channels are shared by both the originating and handoff request calls. In the proposed scheme, both kinds of handoff request calls make their own queues. The system is modeled by a three-dimensional Markov chain. We apply the Successive Over-Relaxation (SOR) method to obtain the equilibrium state probabilities. Blocking probabilities of calls, forced termination probabilities and average queue length of handoff calls of each type are evaluated. We can make the forced termination probabilities of handoff request calls smaller than the blocking probability of originating calls. Moreover, we can make the forced termination probability of high speed handoff request calls smaller than that of the low speed ones. Necessary queue size for the two kinds of handoff request calls are also estimated.

  • Trellis-Coded OFDM Signal Detection with Maximal Ratio Combining and Combined Equalization and Trellis Decoding

    SeongSik LEE  Jeong Woo JWA  HwangSoo LEE  

     
    LETTER-Radio Communication

      Vol:
    E80-B No:4
      Page(s):
    632-638

    We propose an improved orthogonal frequency division multiplexing (OFDM) signal detector which uses the minimum mean-square error (MMSE) noise feedback equalization (NFE). The input bit stream is trellis-coded to form OFDM signal blocks and the maximal ratio combining (MRC) is adopted at the receiver in order to improve the performance of the detector. As a result, we obtain significantly improved detection performance compared with the conventional OFDM receivers as follows. Using the proposed MMSE-NFE in the receiver, we can obtain the performance gain of about 1.5 dB to 2 dB in symbol energy to noise power spectral density (Es/No) for Doppler frequencies of fd=20 and 100 Hz, respectively, over the receiver with the MMSE linear equalization (LE) alone at symbol error rate (SER) of about 10-3. With MRC and trellis coding, the performance gain of about 11 dB in Es/No for fd=20 and 100 Hz at SER of about 10-3 is obtained.

  • Computational Power of Nondeterministic Ordered Binary Decision Diagrams and Their Subclasses

    Kazuyoshi TAKAGI  Koyo NITTA  Hironori BOUNO  Yasuhiko TAKENAGA  Shuzo YAJIMA  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    663-669

    Ordered Binary Decision Diagrams (OBDDs) are graph-based representations of Boolean functions which are widely used because of their good properties. In this paper, we introduce nondeterministic OBDDs (NOBDDs) and their restricted forms, and evaluate their expressive power. In some applications of OBDDs, canonicity, which is one of the good properties of OBDDs, is not necessary. In such cases, we can reduce the required amount of storage by using OBDDs in some non-canonical form. A class of NOBDDs can be used as a non-canonical form of OBDDs. In this paper, we focus on two particular methods which can be regarded as using restricted forms of NOBDDs. Our aim is to show how the size of OBDDs can be reduced in such forms from theoretical point of view. Firstly, we consider a method to solve satisfiability problem of combinational circuits using the structure of circuits as a key to reduce the NOBDD size. We show that the NOBDD size is related to the cutwidth of circuits. Secondly, we analyze methods that use OBDDs to represent Boolean functions as sets of product terms. We show that the class of functions treated feasibly in this representation strictly contains that in OBDDs and contained by that in NOBDDs.

  • Polynomials Approximating Complex Functions

    Masao KODAMA  Kengo TAIRA  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E80-A No:4
      Page(s):
    778-781

    We frequently use a polynomial to approximate a complex function. This study shows a method which determines the optimum coefficients and the number of terms of the polynomial, and the error of the polynomial is estimated.

  • Texture Coding Using 2D-DCT Based on Extension/Interpolation (EI)

    Soon-Jae CHO  Seong-Dae KIM  

     
    LETTER-Image Theory

      Vol:
    E80-A No:4
      Page(s):
    789-794

    In this paper, a new method capable of effectively coding arbitrarity-shaped image regions is presented. The image region is spanned into the 8 8 rectangular block and its intermediate luminances are interpolated. After all liminances in the 8 8 block are obtained from pixels in the region, they are transformed by 8 8 DCT. The proposed extension/interpolation (EL) method is compared with conventional ones, such as SA-DCT, mean stuffing, etc., under three aspects: peak signal-to-noise ratio (PSNR), hardware complexity, and the flexibility for improvement of performance. Simulation results show that the performance of the proposed method is superior to that of the conventional ones. In addition, we introduce an improved version by repetitively performing the EL method.

  • Low Rayleigh Scattering Silicate Glasses for Optical Fibers

    Shigeki SAKAGUCHI  Shin-ichi TODOROKI  

     
    PAPER

      Vol:
    E80-B No:4
      Page(s):
    508-515

    We propose low Rayleigh scattering Na2O-MgO-SiO2 (NMS) glass as a candidate material for low-loss optical fibers. This glass exhibits Rayleigh scattering which is only 0.4 times that of silica glass, and a theoretical evaluation suggests that it is dominated by density fluctuation. An investigation of the optical properties of NMS glass reveals that a minimum loss of 0.06 dB/km is expected at a wavelength of 1.6 µm and that the zero-material dispersion wavelength is found in the 1.5 µm band. To establish the waveguide structure, we evaluated the feasibility of using F-doped NMS (NMS-F) glass as a cladding layer for an NMS core and found that it is suitable because it exhibits low relative scattering (e.g. 0.7) and is versatile in terms of viscosity matching. We also describe an attempt to draw optical fibers using the double crucible technique.

4081-4100hit(4624hit)