The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Support Vector Machine(103hit)

1-20hit(103hit)

  • Mixed-Integer Linear Optimization Formulations for Feature Subset Selection in Kernel SVM Classification Open Access

    Ryuta TAMURA  Yuichi TAKANO  Ryuhei MIYASHIRO  

     
    PAPER-Numerical Analysis and Optimization

      Pubricized:
    2024/02/08
      Vol:
    E107-A No:8
      Page(s):
    1151-1162

    We study the mixed-integer optimization (MIO) approach to feature subset selection in nonlinear kernel support vector machines (SVMs) for binary classification. To measure the performance of subset selection, we use the distance between two classes (DBTC) in a high-dimensional feature space based on the Gaussian kernel function. However, DBTC to be maximized as an objective function is nonlinear, nonconvex and nonconcave. Despite the difficulty of linearizing such a nonlinear function in general, our major contribution is to propose a mixed-integer linear optimization (MILO) formulation to maximize DBTC for feature subset selection, and this MILO problem can be solved to optimality using optimization software. We also derive a reduced version of the MILO problem to accelerate our MILO computations. Experimental results show good computational efficiency for our MILO formulation with the reduced problem. Moreover, our method can often outperform the linear-SVM-based MILO formulation and recursive feature elimination in prediction performance, especially when there are relatively few data instances.

  • Implementing Optical Analog Computing and Electrooptic Hopfield Network by Silicon Photonic Circuits Open Access

    Guangwei CONG  Noritsugu YAMAMOTO  Takashi INOUE  Yuriko MAEGAMI  Morifumi OHNO  Shota KITA  Rai KOU  Shu NAMIKI  Koji YAMADA  

     
    INVITED PAPER

      Pubricized:
    2024/01/05
      Vol:
    E107-A No:5
      Page(s):
    700-708

    Wide deployment of artificial intelligence (AI) is inducing exponentially growing energy consumption. Traditional digital platforms are becoming difficult to fulfill such ever-growing demands on energy efficiency as well as computing latency, which necessitates the development of high efficiency analog hardware platforms for AI. Recently, optical and electrooptic hybrid computing is reactivated as a promising analog hardware alternative because it can accelerate the information processing in an energy-efficient way. Integrated photonic circuits offer such an analog hardware solution for implementing photonic AI and machine learning. For this purpose, we proposed a photonic analog of support vector machine and experimentally demonstrated low-latency and low-energy classification computing, which evidences the latency and energy advantages of optical analog computing over traditional digital computing. We also proposed an electrooptic Hopfield network for classifying and recognizing time-series data. This paper will review our work on implementing classification computing and Hopfield network by leveraging silicon photonic circuits.

  • Comments on Quasi-Linear Support Vector Machine for Nonlinear Classification

    Sei-ichiro KAMATA  Tsunenori MINE  

     
    WRITTEN DISCUSSION-General Fundamentals and Boundaries

      Pubricized:
    2023/05/08
      Vol:
    E106-A No:11
      Page(s):
    1444-1445

    In 2014, the above paper entitled ‘Quasi-Linear Support Vector Machine for Nonlinear Classification’ was published by Zhou, et al. [1]. They proposed a quasi-linear kernel function for support vector machine (SVM). However, in this letter, we point out that this proposed kernel function is a part of multiple kernel functions generated by well-known multiple kernel learning which is proposed by Bach, et al. [2] in 2004. Since then, there have been a lot of related papers on multiple kernel learning with several applications [3]. This letter verifies that the main kernel function proposed by Zhou, et al. [1] can be derived using multiple kernel learning algorithms [3]. In the kernel construction, Zhou, et al. [1] used Gaussian kernels, but the multiple kernel learning had already discussed the locality of additive Gaussian kernels or other kernels in the framework [4], [5]. Especially additive Gaussian or other kernels were discussed in tutorial at major international conference ECCV2012 [6]. The authors did not discuss these matters.

  • Authors' Reply to the Comments by Kamata et al.

    Bo ZHOU  Benhui CHEN  Jinglu HU  

     
    WRITTEN DISCUSSION

      Pubricized:
    2023/05/08
      Vol:
    E106-A No:11
      Page(s):
    1446-1449

    We thank Kamata et al. (2023) [1] for their interest in our work [2], and for providing an explanation of the quasi-linear kernel from a viewpoint of multiple kernel learning. In this letter, we first give a summary of the quasi-linear SVM. Then we provide a discussion on the novelty of quasi-linear kernels against multiple kernel learning. Finally, we explain the contributions of our work [2].

  • Frank-Wolfe for Sign-Constrained Support Vector Machines

    Kenya TAJIMA  Takahiko HENMI  Tsuyoshi KATO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/06/27
      Vol:
    E105-D No:10
      Page(s):
    1734-1742

    Domain knowledge is useful to improve the generalization performance of learning machines. Sign constraints are a handy representation to combine domain knowledge with learning machine. In this paper, we consider constraining the signs of the weight coefficients in learning the linear support vector machine, and develop an optimization algorithm for minimizing the empirical risk under the sign constraints. The algorithm is based on the Frank-Wolfe method that also converges sublinearly and possesses a clear termination criterion. We show that each iteration of the Frank-Wolfe also requires O(nd+d2) computational cost. Furthermore, we derive the explicit expression for the minimal iteration number to ensure an ε-accurate solution by analyzing the curvature of the objective function. Finally, we empirically demonstrate that the sign constraints are a promising technique when similarities to the training examples compose the feature vector.

  • SVM Based Intrusion Detection Method with Nonlinear Scaling and Feature Selection

    Fei ZHANG  Peining ZHEN  Dishan JING  Xiaotang TANG  Hai-Bao CHEN  Jie YAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/02/14
      Vol:
    E105-D No:5
      Page(s):
    1024-1038

    Intrusion is one of major security issues of internet with the rapid growth in smart and Internet of Thing (IoT) devices, and it becomes important to detect attacks and set out alarm in IoT systems. In this paper, the support vector machine (SVM) and principal component analysis (PCA) based method is used to detect attacks in smart IoT systems. SVM with nonlinear scheme is used for intrusion classification and PCA is adopted for feature selection on the training and testing datasets. Experiments on the NSL-KDD dataset show that the test accuracy of the proposed method can reach 82.2% with 16 features selected from PCA for binary-classification which is almost the same as the result obtained with all the 41 features; and the test accuracy can achieve 78.3% with 29 features selected from PCA for multi-classification while 79.6% without feature selection. The Denial of Service (DoS) attack detection accuracy of the proposed method can achieve 8.8% improvement compared with existing artificial neural network based method.

  • Feasibility Study for Computer-Aided Diagnosis System with Navigation Function of Clear Region for Real-Time Endoscopic Video Image on Customizable Embedded DSP Cores

    Masayuki ODAGAWA  Tetsushi KOIDE  Toru TAMAKI  Shigeto YOSHIDA  Hiroshi MIENO  Shinji TANAKA  

     
    LETTER-VLSI Design Technology and CAD

      Pubricized:
    2021/07/08
      Vol:
    E105-A No:1
      Page(s):
    58-62

    This paper presents examination result of possibility for automatic unclear region detection in the CAD system for colorectal tumor with real time endoscopic video image. We confirmed that it is possible to realize the CAD system with navigation function of clear region which consists of unclear region detection by YOLO2 and classification by AlexNet and SVMs on customizable embedded DSP cores. Moreover, we confirmed the real time CAD system can be constructed by a low power ASIC using customizable embedded DSP cores.

  • Classification with CNN features and SVM on Embedded DSP Core for Colorectal Magnified NBI Endoscopic Video Image

    Masayuki ODAGAWA  Takumi OKAMOTO  Tetsushi KOIDE  Toru TAMAKI  Shigeto YOSHIDA  Hiroshi MIENO  Shinji TANAKA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2021/07/21
      Vol:
    E105-A No:1
      Page(s):
    25-34

    In this paper, we present a classification method for a Computer-Aided Diagnosis (CAD) system in a colorectal magnified Narrow Band Imaging (NBI) endoscopy. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimination result by a computer. Therefore, in order to identify lesions with high robustness and stable classification to these images specific to video frame, we implement a CAD system for colorectal endoscopic images with the Convolutional Neural Network (CNN) feature and Support Vector Machine (SVM) classification on the embedded DSP core. To improve the robustness of CAD system, we construct the SVM learned by multiple image sizes data sets so as to adapt to the noise peculiar to the video image. We confirmed that the proposed method achieves higher robustness, stable, and high classification accuracy in the endoscopic video image. The proposed method also can cope with differences in resolution by old and new endoscopes and perform stably with respect to the input endoscopic video image.

  • A Hardware Implementation on Customizable Embedded DSP Core for Colorectal Tumor Classification with Endoscopic Video toward Real-Time Computer-Aided Diagnosais System

    Masayuki ODAGAWA  Takumi OKAMOTO  Tetsushi KOIDE  Toru TAMAKI  Bisser RAYTCHEV  Kazufumi KANEDA  Shigeto YOSHIDA  Hiroshi MIENO  Shinji TANAKA  Takayuki SUGAWARA  Hiroshi TOISHI  Masayuki TSUJI  Nobuo TAMBA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2020/10/06
      Vol:
    E104-A No:4
      Page(s):
    691-701

    In this paper, we present a hardware implementation of a colorectal cancer diagnosis support system using a colorectal endoscopic video image on customizable embedded DSP. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimination result by a computer. Therefore, in order to identify lesions with high robustness and stable classification to these images specific to video frame, we implement a computer-aided diagnosis (CAD) system for colorectal endoscopic images with Narrow Band Imaging (NBI) magnification with the Convolutional Neural Network (CNN) feature and Support Vector Machine (SVM) classification. Since CNN and SVM need to perform many multiplication and accumulation (MAC) operations, we implement the proposed hardware system on a customizable embedded DSP, which can realize at high speed MAC operations and parallel processing with Very Long Instruction Word (VLIW). Before implementing to the customizable embedded DSP, we profile and analyze processing cycles of the CAD system and optimize the bottlenecks. We show the effectiveness of the real-time diagnosis support system on the embedded system for endoscopic video images. The prototyped system demonstrated real-time processing on video frame rate (over 30fps @ 200MHz) and more than 90% accuracy.

  • Fuzzy Output Support Vector Machine Based Incident Ticket Classification

    Libo YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/10/14
      Vol:
    E104-D No:1
      Page(s):
    146-151

    Incident ticket classification plays an important role in the complex system maintenance. However, low classification accuracy will result in high maintenance costs. To solve this issue, this paper proposes a fuzzy output support vector machine (FOSVM) based incident ticket classification approach, which can be implemented in the context of both two-class SVMs and multi-class SVMs such as one-versus-one and one-versus-rest. Our purpose is to solve the unclassifiable regions of multi-class SVMs to output reliable and robust results by more fine-grained analysis. Experiments on both benchmark data sets and real-world ticket data demonstrate that our method has better performance than commonly used multi-class SVM and fuzzy SVM methods.

  • A Privacy-Preserving Machine Learning Scheme Using EtC Images

    Ayana KAWAMURA  Yuma KINOSHITA  Takayuki NAKACHI  Sayaka SHIOTA  Hitoshi KIYA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:12
      Page(s):
    1571-1578

    We propose a privacy-preserving machine learning scheme with encryption-then-compression (EtC) images, where EtC images are images encrypted by using a block-based encryption method proposed for EtC systems with JPEG compression. In this paper, a novel property of EtC images is first discussed, although EtC ones was already shown to be compressible as a property. The novel property allows us to directly apply EtC images to machine learning algorithms non-specialized for computing encrypted data. In addition, the proposed scheme is demonstrated to provide no degradation in the performance of some typical machine learning algorithms including the support vector machine algorithm with kernel trick and random forests under the use of z-score normalization. A number of facial recognition experiments with are carried out to confirm the effectiveness of the proposed scheme.

  • Machine Learning-Based Approach for Depression Detection in Twitter Using Content and Activity Features

    Hatoon S. ALSAGRI  Mourad YKHLEF  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2020/04/24
      Vol:
    E103-D No:8
      Page(s):
    1825-1832

    Social media channels, such as Facebook, Twitter, and Instagram, have altered our world forever. People are now increasingly connected than ever and reveal a sort of digital persona. Although social media certainly has several remarkable features, the demerits are undeniable as well. Recent studies have indicated a correlation between high usage of social media sites and increased depression. The present study aims to exploit machine learning techniques for detecting a probable depressed Twitter user based on both, his/her network behavior and tweets. For this purpose, we trained and tested classifiers to distinguish whether a user is depressed or not using features extracted from his/her activities in the network and tweets. The results showed that the more features are used, the higher are the accuracy and F-measure scores in detecting depressed users. This method is a data-driven, predictive approach for early detection of depression or other mental illnesses. This study's main contribution is the exploration part of the features and its impact on detecting the depression level.

  • Ridge-Adding Homotopy Approach for l1-norm Minimization Problems

    Haoran LI  Binyu WANG  Jisheng DAI  Tianhong PAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/03/10
      Vol:
    E103-D No:6
      Page(s):
    1380-1387

    Homotopy algorithm provides a very powerful approach to select the best regularization term for the l1-norm minimization problem, but it is lack of provision for handling singularities. The singularity problem might be frequently encountered in practical implementations if the measurement matrix contains duplicate columns, approximate columns or columns with linear dependent in kernel space. The existing method for handling Homotopy singularities introduces a high-dimensional random ridge term into the measurement matrix, which has at least two shortcomings: 1) it is very difficult to choose a proper ridge term that applies to several different measurement matrices; and 2) the high-dimensional ridge term may accumulatively degrade the recovery performance for large-scale applications. To get around these shortcomings, a modified ridge-adding method is proposed to deal with the singularity problem, which introduces a low-dimensional random ridge vector into the l1-norm minimization problem directly. Our method provides a much simpler implementation, and it can alleviate the degradation caused by the ridge term because the dimension of ridge term in the proposed method is much smaller than the original one. Moreover, the proposed method can be further extended to handle the SVMpath initialization singularities. Theoretical analysis and experimental results validate the performance of the proposed method.

  • Privacy-Preserving Support Vector Machine Computing Using Random Unitary Transformation

    Takahiro MAEKAWA  Ayana KAWAMURA  Takayuki NAKACHI  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1849-1855

    A privacy-preserving support vector machine (SVM) computing scheme is proposed in this paper. Cloud computing has been spreading in many fields. However, the cloud computing has some serious issues for end users, such as the unauthorized use of cloud services, data leaks, and privacy being compromised. Accordingly, we consider privacy-preserving SVM computing. We focus on protecting visual information of images by using a random unitary transformation. Some properties of the protected images are discussed. The proposed scheme enables us not only to protect images, but also to have the same performance as that of unprotected images even when using typical kernel functions such as the linear kernel, radial basis function (RBF) kernel and polynomial kernel. Moreover, it can be directly carried out by using well-known SVM algorithms, without preparing any algorithms specialized for secure SVM computing. In an experiment, the proposed scheme is applied to a face-based authentication algorithm with SVM classifiers to confirm the effectiveness.

  • Weber Centralized Binary Fusion Descriptor for Fingerprint Liveness Detection

    Asera WAYNE ASERA  Masayoshi ARITSUGI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2019/04/17
      Vol:
    E102-D No:7
      Page(s):
    1422-1425

    In this research, we propose a novel method to determine fingerprint liveness to improve the discriminative behavior and classification accuracy of the combined features. This approach detects if a fingerprint is from a live or fake source. In this approach, fingerprint images are analyzed in the differential excitation (DE) component and the centralized binary pattern (CBP) component, which yield the DE image and CBP image, respectively. The images obtained are used to generate a two-dimensional histogram that is subsequently used as a feature vector. To decide if a fingerprint image is from a live or fake source, the feature vector is processed using support vector machine (SVM) classifiers. To evaluate the performance of the proposed method and compare it to existing approaches, we conducted experiments using the datasets from the 2011 and 2015 Liveness Detection Competition (LivDet), collected from four sensors. The results show that the proposed method gave comparable or even better results and further prove that methods derived from combination of features provide a better performance than existing methods.

  • HOAH: A Hybrid TCP Throughput Prediction with Autoregressive Model and Hidden Markov Model for Mobile Networks

    Bo WEI  Kenji KANAI  Wataru KAWAKAMI  Jiro KATTO  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1612-1624

    Throughput prediction is one of the promising techniques to improve the quality of service (QoS) and quality of experience (QoE) of mobile applications. To address the problem of predicting future throughput distribution accurately during the whole session, which can exhibit large throughput fluctuations in different scenarios (especially scenarios of moving user), we propose a history-based throughput prediction method that utilizes time series analysis and machine learning techniques for mobile network communication. This method is called the Hybrid Prediction with the Autoregressive Model and Hidden Markov Model (HOAH). Different from existing methods, HOAH uses Support Vector Machine (SVM) to classify the throughput transition into two classes, and predicts the transmission control protocol (TCP) throughput by switching between the Autoregressive Model (AR Model) and the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). We conduct field experiments to evaluate the proposed method in seven different scenarios. The results show that HOAH can predict future throughput effectively and decreases the prediction error by a maximum of 55.95% compared with other methods.

  • Extraction and Recognition of Shoe Logos with a Wide Variety of Appearance Using Two-Stage Classifiers

    Kazunori AOKI  Wataru OHYAMA  Tetsushi WAKABAYASHI  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1325-1332

    A logo is a symbolic presentation that is designed not only to identify a product manufacturer but also to attract the attention of shoppers. Shoe logos are a challenging subject for automatic extraction and recognition using image analysis techniques because they have characteristics that distinguish them from those of other products; that is, there is much within-class variation in the appearance of shoe logos. In this paper, we propose an automatic extraction and recognition method for shoe logos with a wide variety of appearance using a limited number of training samples. The proposed method employs maximally stable extremal regions for the initial region extraction, an iterative algorithm for region grouping, and gradient features and a support vector machine for logo recognition. The results of performance evaluation experiments using a logo dataset that consists of a wide variety of appearances show that the proposed method achieves promising performance for both logo extraction and recognition.

  • Drift-Free Tracking Surveillance Based on Online Latent Structured SVM and Kalman Filter Modules

    Yung-Yao CHEN  Yi-Cheng ZHANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/11/14
      Vol:
    E101-D No:2
      Page(s):
    491-503

    Tracking-by-detection methods consider tracking task as a continuous detection problem applied over video frames. Modern tracking-by-detection trackers have online learning ability; the update stage is essential because it determines how to modify the classifier inherent in a tracker. However, most trackers search for the target within a fixed region centered at the previous object position; thus, they lack spatiotemporal consistency. This becomes a problem when the tracker detects an incorrect object during short-term occlusion. In addition, the scale of the bounding box that contains the target object is usually assumed not to change. This assumption is unrealistic for long-term tracking, where the scale of the target varies as the distance between the target and the camera changes. The accumulation of errors resulting from these shortcomings results in the drift problem, i.e. drifting away from the target object. To resolve this problem, we present a drift-free, online learning-based tracking-by-detection method using a single static camera. We improve the latent structured support vector machine (SVM) tracker by designing a more robust tracker update step by incorporating two Kalman filter modules: the first is used to predict an adaptive search region in consideration of the object motion; the second is used to adjust the scale of the bounding box by accounting for the background model. We propose a hierarchical search strategy that combines Bhattacharyya coefficient similarity analysis and Kalman predictors. This strategy facilitates overcoming occlusion and increases tracking efficiency. We evaluate this work using publicly available videos thoroughly. Experimental results show that the proposed method outperforms the state-of-the-art trackers.

  • A Segmentation Method of Single- and Multiple-Touching Characters in Offline Handwritten Japanese Text Recognition

    Kha Cong NGUYEN  Cuong Tuan NGUYEN  Masaki NAKAGAWA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2017/08/23
      Vol:
    E100-D No:12
      Page(s):
    2962-2972

    This paper presents a method to segment single- and multiple-touching characters in offline handwritten Japanese text recognition with practical speed. Distortions due to handwriting and a mix of complex Chinese characters with simple phonetic and alphanumeric characters leave optical handwritten text recognition (OHTR) for Japanese still far from perfection. Segmentation of characters, which touch neighbors on multiple points, is a serious unsolved problem. Therefore, we propose a method to segment them which is made in two steps: coarse segmentation and fine segmentation. The coarse segmentation employs vertical projection, stroke-width estimation while the fine segmentation takes a graph-based approach for thinned text images, which employs a new bridge finding process and Voronoi diagrams with two improvements. Unlike previous methods, it locates character centers and seeks segmentation candidates between them. It draws vertical lines explicitly at estimated character centers in order to prevent vertically unconnected components from being left behind in the bridge finding. Multiple candidates of separation are produced by removing touching points combinatorially. SVM is applied to discard improbable segmentation boundaries. Then, ambiguities are finally solved by the text recognition employing linguistic context and geometric context to recognize segmented characters. The results of our experiments show that the proposed method can segment not only single-touching characters but also multiple-touching characters, and each component in our proposed method contributes to the improvement of segmentation and recognition rates.

  • An Extreme Learning Machine Architecture Based on Volterra Filtering and PCA

    Li CHEN  Ling YANG  Juan DU  Chao SUN  Shenglei DU  Haipeng XI  

     
    PAPER-Information Network

      Pubricized:
    2017/08/02
      Vol:
    E100-D No:11
      Page(s):
    2690-2701

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. However, it has a linear output layer which may limit the capability of exploring the available information, since higher-order statistics of the signals are not taken into account. To address this, we propose a novel ELM architecture in which the linear output layer is replaced by a Volterra filter structure. Additionally, the principal component analysis (PCA) technique is used to reduce the number of effective signals transmitted to the output layer. This idea not only improves the processing capability of the network, but also preserves the simplicity of the training process. Then we carry out performance evaluation and application analysis for the proposed architecture in the context of supervised classification and unsupervised equalization respectively, and the obtained results either on publicly available datasets or various channels, when compared to those produced by already proposed ELM versions and a state-of-the-art algorithm: support vector machine (SVM), highlight the adequacy and the advantages of the proposed architecture and characterize it as a promising tool to deal with signal processing tasks.

1-20hit(103hit)