The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TAB(983hit)

301-320hit(983hit)

  • Verification of Stable Circuit Operation of 180 nm Current Controlled MOS Current Mode Logic under Threshold Voltage Fluctuation

    Masashi KAMIYANAGI  Takuya IMAMOTO  Takeshi SASAKI  Hyoungjun NA  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    760-766

    We have succeeded in fabricating 180 nm Current Controlled MOS Current Mode Logic (CC-MCML) and verified the stable circuit operation of 180 nm CC-MCML under threshold voltage fluctuations by measurement. The performance stability of the CC-MCML inverter under the fluctuations of threshold voltage of NMOS and PMOS is evaluated from the viewpoint of diminishing the bias offset voltage ΔVB. The ΔVB, that is defined as (base voltage of output waveform) - (base voltage of input waveform), is a key design parameter for differential circuit. It is shown that when the threshold voltage of NMOS fluctuates in the range of 0.53 V to 0.69 V, and threshold voltage of PMOS fluctuates in the range of -0.47 V to -0.67 V, the CC-MCML technique is able to suppress ΔVB within only 30 mV, where as the conventional MCML technique caused maximum ΔVB of 1.0 V. In this paper, it is verified for the first time that the fabricated CC-MCML is more tolerant against the fluctuations of threshold voltages than the conventional MCML.

  • The Impact of Current Controlled-MOS Current Mode Logic/Magnetic Tunnel Junction Hybrid Circuit for Stable and High-Speed Operation

    Tetsuo ENDOH  Masashi KAMIYANAGI  Masakazu MURAGUCHI  Takuya IMAMOTO  Takeshi SASAKI  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    743-750

    In order to realize Integrated Circuits (IC) with operation over the 10 GHz range, conventional CMOS logic faces critical issues, such as increasing power consumption, and difficulty to aggressively scale the device size and so on. To overcome this issue, we have proposed Current Controlled-MOS Current Mode Logic (CC-MCML) to realize the reduction of power consumption and the enhancement of the operation speed in logic circuits without scaling the gate length of the MOSFET, and confirmed the performance of these circuits both theoretically and experimentally. In the CC-MCML it is extremely important to control the input voltage of the MOSFET used as the constant current source in order to make the base voltage of the input signal and the output signal equivalent. In this paper, we propose CC-MCML/MTJ (Magnetic Tunnel Junction) circuit, which is one type of nonvolatile memory hybrid circuit technology. A more stable and precise operation is realized by cutting the range of the input voltage of the constant current source, and it is shown that the operation of CC-MCML/MTJ Hybrid Circuit enables us to suppress the base voltage difference due to the Vth fluctuation in comparison with the conventional CC-MCML. These results imply the high potential of Si-CMOS/Spintronics Hybrid technologies for future IC.

  • An Image Stabilization Technology for Digital Still Camera Based on Blind Deconvolution

    Haruo HATANAKA  Shimpei FUKUMOTO  Haruhiko MURATA  Hiroshi KANO  Kunihiro CHIHARA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E94-D No:5
      Page(s):
    1082-1089

    In this article, we present a new image-stabilization technology for still images based on blind deconvolution and introduce it to a consumer digital still camera. This technology consists of three features: (1)double-exposure-based PSF detection, (2)efficient image deblurring filter, and (3)edge-based ringing reduction. Without deteriorating the deblurring performance, the new technology allows us to reduce processing time and ringing artifacts, both of which are common problems in image deconvolution.

  • A Simplified Jury's Table for Complex Polynomials

    Younseok CHOO  Young-Ju KIM  

     
    LETTER-Systems and Control

      Vol:
    E94-A No:4
      Page(s):
    1148-1150

    In this letter a simplified Jury's table for real polynomials is extended to complex polynomials. Then it is shown that the extended table contains information on the root distribution of complex polynomials with respect to the unit circle in the complex plane. The result given in this letter is distinct from the recent one in that root counting is performed in a different way.

  • Linear Detrending Subsequence Matching in Time-Series Databases

    Myeong-Seon GIL  Yang-Sae MOON  Bum-Soo KIM  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E94-D No:4
      Page(s):
    917-920

    Every time-series has its own linear trend, the directionality of a time-series, and removing the linear trend is crucial to get more intuitive matching results. Supporting the linear detrending in subsequence matching is a challenging problem due to the huge number of all possible subsequences. In this paper we define this problem as the linear detrending subsequence matching and propose its efficient index-based solution. To this end, we first present a notion of LD-windows (LD means linear detrending). Using the LD-windows we then present a lower bounding theorem for the index-based matching solution and show its correctness. We next propose the index building and subsequence matching algorithms. We finally show the superiority of the index-based solution.

  • Dynamic Channel Adaptation for IP Based Split Spectrum Femto/Macro Cellular Systems

    Kyungmin PARK  Chungha KOH  Kangjin YOON  Youngyong KIM  

     
    LETTER

      Vol:
    E94-B No:3
      Page(s):
    694-697

    In femto/macro cellular networks, the stability and fairness problems caused by the unplanned and random characteristic of femtocells must be solved. By applying queueing theory in IP based femto/macro cellular networks, we found the stability condition, and described two kinds of cell section policies of users. As a main contribution, we provided the adaptive channel distribution algorithm which minimizes the average packet sojourn time at transmitting systems and keeps the whole systems stable and fair among cells. Through experiments in various environments, we analyzed the influence of channel reuse factor, cell selection policies, and the number of femtocells on system performance.

  • Performance Evaluation of Flash SSDs in a Transaction Processing System

    Yongkun WANG  Kazuo GODA  Miyuki NAKANO  Masaru KITSUREGAWA  

     
    PAPER

      Vol:
    E94-D No:3
      Page(s):
    602-611

    Flash SSDs are being incorporated in many enterprise storage platforms recently and expected to play a notable role for IO-intensive applications. However, the IO characteristics of flash SSDs are very different from those of hard disks. Since existent storage subsystems are designed on the basis of characteristics of hard disks, the IO performance of flash SSDs may not be obtained as expected. This paper provides an evaluation of flash SSDs in transaction processing systems with TPC-C benchmark. We present performance results with various configurations and describe our observations of the IO behaviors at different levels along the IO path, which helps to understand the performance of flash-based transaction processing systems and provides certain references to build flash-based systems for IO-intensive applications.

  • A Framework of Ontology-Based Tablet Production Supporting System for a Drug Reformulation

    Nopphadol CHALORTHAM  Phuriwat LEESAWAT  Taneth RUANGRAJITPAKORN  Thepchai SUPNITHI  

     
    PAPER

      Vol:
    E94-D No:3
      Page(s):
    448-455

    This paper presents a framework of supporting system for a drug formulation. We designed ontology to represent the related knowledge for reusable and sharing purposes. The designed ontology is applied with operation rules to suggest an appropriate generic drug production based on information of original drug. The system also provides a validation module to preliminarily approve a pharmaceutical equivalence of the suggested result. Preliminary testing with four random samples shows potential to reformulate a generic product by returning a satisfactory and acceptable of the system suggestions for all samples.

  • Power Saving Control Method for Battery-Powered Portable Wireless LAN Access Points in an Overlapping BSS Environment

    Masakatsu OGAWA  Takefumi HIRAGURI  Kentaro NISHIMORI  Naoki HONMA  Kazuhiro TAKAYA  Kazuo MURAKAWA  

     
    PAPER

      Vol:
    E94-B No:3
      Page(s):
    658-666

    This paper proposes a power saving control method for battery-powered portable wireless LAN (WLAN) access points (APs) in an overlapping basic service set (OBSS) environment. The IEEE802.11 standard does not support power saving control for APs. Some conventional power saving control methods for APs have been proposed that use the network allocation vector (NAV) to inhibit transmission at stations (STAs) while the AP is sleeping. However, since with these approaches the actual beacon interval in the OBSS environment may be extended due to the NAV as compared to the beacon interval which is set at the AP, the power consumption and delay may be increased as compared to a single BSS unaffected by interference from neighboring APs. To overcome this problem, this paper introduces a new action frame named power saving access point (PSAP) action frame which the AP uses to inform STAs within its BSS about the AP's sleep length. In addition, a function of the PSAP action frame is that STAs enter the sleep state after receiving the PSAP action frame. The proposed control method avoids the postponement of beacon transmission and reduces the power consumption in an OBSS environment, as compared to the conventional control method. Numerical analysis and computer simulation reveal that the newly proposed control method conserves power as compared to the conventional control method. The proposed control method achieves the minimum consumed power ratio at the AP, which is 44% as compared to the standard, when the beacon interval is 100 ms and the sleep length is 60 ms, even if the number of neighboring APs in an OBSS environment is increased.

  • 256 QAM Digital Coherent Optical Transmission Using Raman Amplifiers Open Access

    Masato YOSHIDA  Seiji OKAMOTO  Tatsunori OMIYA  Keisuke KASAI  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E94-B No:2
      Page(s):
    417-424

    To meet the increasing demand to expand wavelength division multiplexing (WDM) transmission capacity, ultrahigh spectral density coherent optical transmission employing multi-level modulation formats has attracted a lot of attention. In particular, ultrahigh multi-level quadrature amplitude modulation (QAM) has an enormous advantage as regards expanding the spectral efficiency to 10 bit/s/Hz and even approaching the Shannon limit. We describe fundamental technologies for ultrahigh spectral density coherent QAM transmission and present experimental results on polarization-multiplexed 256 QAM coherent optical transmission using heterodyne and homodyne detection with a frequency-stabilized laser and an optical phase-locked loop technique. In this experiment, Raman amplifiers are newly adopted to decrease the signal power, which can reduce the fiber nonlinearity. As a result, the power penalty was reduced from 5.3 to 2.0 dB. A 64 Gbit/s data signal is successfully transmitted over 160 km with an optical bandwidth of 5.4 GHz.

  • Sanitizable Signatures Reconsidered

    Dae Hyun YUM  Pil Joong LEE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:2
      Page(s):
    717-724

    A sanitizable signature scheme allows a semi-trusted party, designated by a signer, to modify pre-determined parts of a signed message without interacting with the original signer. To date, many sanitizable signature schemes have been proposed based on various cryptographic techniques. However, previous works are usually built upon the paradigm of dividing a message into submessages and applying a cryptographic primitive to each submessage. This methodology entails the computation time (and often signature length) in linear proportion to the number of sanitizable submessages. We present a new approach to constructing sanitizable signatures with constant overhead for signing and verification, irrespective of the number of submessages, both in computational cost and in signature size.

  • Timeliness Multi-Agent Coordination Technology in Autonomous Decentralized Database Systems

    Carlos PEREZ-LEGUIZAMO  Kinji MORI  

     
    PAPER-Scalability & Timeliness

      Vol:
    E94-D No:1
      Page(s):
    27-34

    The turn of the century is witnessing radical changes in the way information services are spreading due to the progress of IT and the constantly increase in the number of users of the WWW. Therefore, the business market is changing its strategy for a modern online business environment. Autonomous Decentralized Database System (ADDS), based on autonomous coordinating subsystems, has been proposed as a system architecture in order to meet the innovative e-business requirements for consistency and high response among distributed database systems. Autonomy and decentralization of subsystems help achieving high response time in highly competitive situation and autonomous Mobile Agent based coordination has been proposed to achieve flexibility in a highly dynamic environment. In this paper, it is analyzed the case in which the system size increases; and a multi agent coordination, the same number of mobile agents and sites coexist in the system, is proposed for achieving the timeliness property. The response time in the system is conformed by those transactions that require coordination and those that can be satisfied immediately. In accordance, the distribution of the data in the system for coordination is a medullar issue for the improvement of the response time. A trade-off exits between these two kind of transactions depending on the coordination of the Mobile Agents, the capacity of allocating data among the sites, and as well as the distribution of the data and user requests in the system. In this sense, since the system requires high response time, a data allocation technology in which each mobile agent autonomously determine its own capacity for adjusting data among the sites is proposed. Thus, the system will adapt itself to the dynamic environment. The effectiveness of the proposed architecture and technologies are evaluated by simulation.

  • A Reference Programming Model for Building Context-Aware Application

    Junbin ZHANG  Yong QI  Di HOU  Ming LI  

     
    PAPER-Information Network

      Vol:
    E94-D No:1
      Page(s):
    114-126

    Context-aware applications are a key aspect of pervasive computing. The core issue of context-aware application development is how to make the application behave suitably according to the changing context without coupling such context dependencies in the program. Several programming paradigms and languages have been proposed to facilitate the development, but they are either lack of sufficient flexibility or somewhat complex for programming and deploying. A reference programming model is proposed in this paper to make up inadequacy of those approaches. In the model, virtual tables constructed by system and maintained by space manager connect knowledge of both developer and space manager while separating dependency between context and application logic from base program. Hierarchy and architecture of the model are presented, and implementation suggestions are also discussed. Validation and evaluation show that the programming model is lightweight and easy to be implemented and deployed. Moreover, the model brings better flexibility for developing context-aware applications.

  • On the Full MAC Security of a Double-Piped Mode of Operation

    Kan YASUDA  

     
    PAPER-Identification

      Vol:
    E94-A No:1
      Page(s):
    84-91

    We revisit the double-pipe construction introduced by Lucks at Asiacrypt 2005. Lucks originally studied the construction for iterated hash functions and showed that the approach is effective in improving security against various types of collision and (second-)preimage attacks. Instead, in this paper we apply the construction to the secret-key setting, where the underlying FIL (fixed-input-length) compression function is equipped with a dedicated key input. We make some adjustments to Lucks' original design so that now the new mode works with a single key and operates as a domain extension of MACs (message authentication codes). Though more than twice as slow as the Merkle-Damgård construction, the double-piped mode enjoys security strengthened beyond the birthday bound. More specifically, when iterating an FIL-MAC whose output size is n-bit, the new double-piped mode yields an AIL-(arbitrary-input-length-)MAC with security up to O(2n) query complexity. This bound contrasts sharply with the birthday bound of O(2n/2), which was the best MAC security accomplished by earlier constructions.

  • Low Power Bus Binding Exploiting Optimal Substructure

    Ji-Hyung KIM  Jun-Dong CHO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:1
      Page(s):
    332-341

    The earlier the stage where we perform low power design, the higher the dynamic power reduction we achieve. In this paper, we focus on reducing switching activity in high-level synthesis, especially, in the problem of functional module binding, bus binding or register binding. We propose an effective low power bus binding algorithm based on the table decomposition method, to reduce switching activity. The proposed algorithm is based on the decomposition of the original problem into sub-problems by exploiting the optimal substructure. As a result, it finds an optimal or close-to-optimal binding solution with less computation time. Experimental results show the proposed method obtains a solution 2.3-22.2% closer to optimal solution than one with a conventional heuristic method, 8.0-479.2 times faster than the optimal one (at a threshold value of 1.0E+9).

  • Efficient Context-Sensitive Intrusion Detection Based on State Transition Table

    Jingyu HUA  Mingchu LI  Yizhi REN  Kouichi SAKURAI  

     
    PAPER-Network Security

      Vol:
    E94-A No:1
      Page(s):
    255-264

    Those host-based intrusion detection models like VPStatic first construct a model of acceptable behaviors for each monitored program via static analysis, and then perform intrusion detection by comparing them with programs' runtime behaviors. These models usually share the highly desirable feature that they do not produce false alarms but face the conflicts between accuracy and efficiency. For instance, the high accuracy of the VPStatic model is at the cost of high space complexity. In this paper, we use a statically-constructed state transition table (STT), which records expected transitions among system calls as well as their stack states (return address lists), as a behavior model to perform context-sensitive intrusion detection. According to our analysis, our STT model improves the space efficiency of the VPStatic model without decreasing its high precision and time efficiency. Experiments show that for three test programs, memory uses of our STT models are all much less than half of the VPStatic models'. Thereby, we alleviate the conflicts between the accuracy and the efficiency.

  • Binary Oriented Vulnerability Analyzer Based on Hidden Markov Model

    Hao BAI  Chang-zhen HU  Gang ZHANG  Xiao-chuan JING  Ning LI  

     
    LETTER-Dependable Computing

      Vol:
    E93-D No:12
      Page(s):
    3410-3413

    The letter proposes a novel binary vulnerability analyzer for executable programs that is based on the Hidden Markov Model. A vulnerability instruction library (VIL) is primarily constructed by collecting binary frames located by double precision analysis. Executable programs are then converted into structurized code sequences with the VIL. The code sequences are essentially context-sensitive, which can be modeled by Hidden Markov Model (HMM). Finally, the HMM based vulnerability analyzer is built to recognize potential vulnerabilities of executable programs. Experimental results show the proposed approach achieves lower false positive/negative rate than latest static analyzers.

  • Web API Database Systems for Rapid Web Application Development

    Takeru INOUE  Hiroshi ASAKURA  Yukio UEMATSU  Hiroshi SATO  Noriyuki TAKAHASHI  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3181-3193

    Web APIs are offered in many Web sites for Ajax and mashup, but they have been developed independently since no reusable database component has been specifically created for Web applications. In this paper, we propose WAPDB, a distributed database management system for the rapid development of Web applications. WAPDB is designed on Atom, a set of Web API standards, and provides several of the key features required for Web applications, including efficient access control, an easy extension mechanism, and search and statistics capabilities. By introducing WAPDB, developers are freed from the need to implement these features as well as Web API processing. In addition, its design totally follows the REST architectural style, which gives uniformity and scalability to applications. We develop a proof-of-concept application with WAPDB, and find that it offers great cost effectiveness with no significant impact on performance; in our experiments, the development cost is reduced to less than half with the overhead (in use) of response times of just a few msec.

  • Scan-Based Side-Channel Attack against RSA Cryptosystems Using Scan Signatures

    Ryuta NARA  Kei SATOH  Masao YANAGISAWA  Tatsuo OHTSUKI  Nozomu TOGAWA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E93-A No:12
      Page(s):
    2481-2489

    Scan-based side-channel attacks retrieve a secret key in a cryptography circuit by analyzing scanned data. Since they must be considerable threats to a cryptosystem LSI, we have to protect cryptography circuits from them. RSA is one of the most important cryptography algorithms because it effectively realizes a public-key cryptography system. RSA is extensively used but conventional scan-based side-channel attacks cannot be applied to it because it has a complicated algorithm. This paper proposes a scan-based side-channel attack which enables us to retrieve a secret key in an RSA circuit. The proposed method is based on detecting intermediate values calculated in an RSA circuit. We focus on a 1-bit time-sequence which is specific to some intermediate values. By monitoring the 1-bit time-sequence in the scan path, we can find out the register position specific to the intermediate value and we can know whether this intermediate value is calculated or not in the target RSA circuit. We can retrieve a secret key one-bit by one-bit from MSB to LSB. The experimental results demonstrate that a 1,024-bit secret key used in the target RSA circuit can be retrieved using 30.2 input messages within 98.3 seconds and its 2,048-bit secret key can be retrieved using 34.4 input within 634.0 seconds.

  • Improving Robustness of XCP (eXplicit Control Protocol) for Dynamic Traffic

    Yusuke SAKUMOTO  Hiroyuki OHSAKI  Makoto IMASE  

     
    PAPER-Network

      Vol:
    E93-B No:11
      Page(s):
    3013-3022

    In this paper, we reveal inherent robustness issues of XCP (eXplicit Control Protocol), and propose extensions to XCP for increasing its robustness. XCP has been proposed as an efficient transport-layer protocol for wide-area and high-speed network. XCP is a transport-layer protocol that performs congestion control based on explicit feedback from routers. In the literature, many performance studies of XCP have been performed. However, the effect of traffic dynamics on the XCP performance has not been fully investigated. In this paper, through simulation experiments, we first show that XCP has the following problems: (1) the bottleneck link utilization is lowered against XCP traffic dynamics, and (2) operation of XCP becomes unstable in a network with both XCP and non-XCP traffic. We then propose XCP-IR (XCP with Increased Robustness) that operates efficiently even for dynamic XCP and non-XCP traffic.

301-320hit(983hit)