The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

2161-2180hit(21534hit)

  • Dynamic Strain Measurement with Bandwidth Allocation by Using Random Accessibility of BOCDR

    Osamu FURUKAWA  Hideo SHIDA  Shin-ichiro TEZUKA  Satoshi MATSUURA  Shoji ADACHI  

     
    PAPER-Sensing

      Pubricized:
    2018/11/13
      Vol:
    E102-B No:5
      Page(s):
    1069-1076

    A Brillouin optical correlation domain reflectometry (BOCDR) system, which can set measuring point to arbitrary distance that is aligned in a random order along an optical fiber (i.e., random accessibility), is proposed to measure dynamic strain and experimentally evaluated. This random-access system can allocate measurement bandwidth to measuring point by assigning the measurement times at each measuring point of the total number of strain measurements. This assigned number is not always equally but as necessary for plural objects with different natural frequencies. To verify the system, strain of two vibrating objects with different natural frequencies was measured by one optical fiber which is attached to those objects. The system allocated appropriate measurement bandwidth to each object and simultaneously measured dynamic strain corresponding to the vibrating objects.

  • A Sequential Classifiers Combination Method to Reduce False Negative for Intrusion Detection System

    Sornxayya PHETLASY  Satoshi OHZAHATA  Celimuge WU  Toshihito KATO  

     
    PAPER

      Pubricized:
    2019/02/27
      Vol:
    E102-D No:5
      Page(s):
    888-897

    Intrusion detection system (IDS) is a device or software to monitor a network system for malicious activity. In terms of detection results, there could be two types of false, namely, the false positive (FP) which incorrectly detects normal traffic as abnormal, and the false negative (FN) which incorrectly judges malicious traffic as normal. To protect the network system, we expect that FN should be minimized as low as possible. However, since there is a trade-off between FP and FN when IDS detects malicious traffic, it is difficult to reduce the both metrics simultaneously. In this paper, we propose a sequential classifiers combination method to reduce the effect of the trade-off. The single classifier suffers a high FN rate in general, therefore additional classifiers are sequentially combined in order to detect more positives (reduce more FN). Since each classifier can reduce FN and does not generate much FP in our approach, we can achieve a reduction of FN at the final output. In evaluations, we use NSL-KDD dataset, which is an updated version of KDD Cup'99 dataset. WEKA is utilized as a classification tool in experiment, and the results show that the proposed approach can reduce FN while improving the sensitivity and accuracy.

  • A P2P Sensor Data Stream Delivery System That Guarantees the Specified Reachability under Churn Situations

    Tomoya KAWAKAMI  Tomoki YOSHIHISA  Yuuichi TERANISHI  

     
    PAPER

      Pubricized:
    2019/02/06
      Vol:
    E102-D No:5
      Page(s):
    932-941

    In this paper, we propose a method to construct a scalable sensor data stream delivery system that guarantees the specified delivery quality of service (i.e., total reachability to destinations), even when delivery server resources (nodes) are in a heterogeneous churn situation. A number of P2P-based methods have been proposed for constructing a scalable and efficient sensor data stream system that accommodates different delivery cycles by distributing communication loads of the nodes. However, no existing method can guarantee delivery quality of service when the nodes on the system have a heterogeneous churn rate. As an extension of existing methods, which assign relay nodes based on the distributed hashing of the time-to-deliver, our method specifies the number of replication nodes, based on the churn rate of each node and on the relevant delivery paths. Through simulations, we confirmed that our proposed method can guarantee the required reachability, while avoiding any increase in unnecessary resource assignment costs.

  • Secure Transmission in Wireless Powered Communication Networks with Full-Duplex Receivers

    Qun LI  Ding XU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:5
      Page(s):
    750-754

    This letter studies secure communication in a wireless powered communication network with a full-duplex destination node, who applies either power splitting (PS) or time switching (TS) to coordinate energy harvesting and information decoding of received signals and transmits jamming signals to the eavesdropper using the harvested energy. The secrecy rate is maximized by optimizing PS or TS ratio and power allocation. We propose iterative algorithms with power allocation optimized by the successive convex approximation method. Simulation results demonstrate that the proposed algorithms are superior to other benchmark algorithms.

  • Overflows in Multiservice Systems Open Access

    Mariusz GłĄBOWSKI  Damian KMIECIK  Maciej STASIAK  

     
    INVITED PAPER

      Pubricized:
    2018/11/22
      Vol:
    E102-B No:5
      Page(s):
    958-969

    This article presents a universal and versatile model of multiservice overflow systems based on Hayward's concept. The model can be used to analyze modern telecommunications and computer networks, mobile networks in particular. The advantage of the proposed approach lies in its ability to analyze overflow systems with elastic and adaptive traffic, systems with distributed resources and systems with non-full-availability in primary and secondary resources.

  • Visibility Restoration via Smoothing Speed for Vein Recognition

    Wonjun KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2019/02/08
      Vol:
    E102-D No:5
      Page(s):
    1102-1105

    A novel image enhancement method for vein recognition is introduced. Inspired by observation that the intensity of the vein vessel changes rapidly during the smoothing process compared to that of background (i.e., skin tissue) due to its thin and long shape, we propose to exploit the smoothing speed as a restoration weight for the vein image enhancement. Experimental results based on the CASIA multispectral palm vein database demonstrate that the proposed method is effective to improve the performance of vein recognition.

  • VHDL Design of a SpaceFibre Routing Switch Open Access

    Alessandro LEONI  Pietro NANNIPIERI  Luca FANUCCI  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E102-A No:5
      Page(s):
    729-731

    The technology advancement of satellite instruments requires increasingly fast interconnection technologies, for which no standardised solution exists. SpaceFibre is the forthcoming protocol promising to overcome the limitation of its predecessor SpaceWire, offering data-rate higher than 1Gbps. However, while several implementations of the SpaceFibre IP already exist, its Network Layer is still at experimental level. This article describes the architecture of an implemented SpaceFibre Routing Switch and provides synthesis results for common FPGAs.

  • Distributed Estimation over Delayed Sensor Network with Scalable Communication Open Access

    Ryosuke ADACHI  Yuh YAMASHITA  Koichi KOBAYASHI  

     
    PAPER-Systems and Control

      Vol:
    E102-A No:5
      Page(s):
    712-720

    This paper proposes a distributed delay-compensated observer for a wireless sensor network with delay. Each node of the sensor network aggregates data from the other nodes and sends the aggregated data to the neighbor nodes. In this communication, each node also compensates communication delays among the neighbor nodes. Therefore, all of the nodes can synchronize their sensor measurements using scalable and local communication in real-time. All of the nodes estimate the state variables of a system simultaneously. The observer in each node is similar to the delay-compensated observer with multi-sensor delays proposed by Watanabe et al. Convergence rates for the proposed observer can be arbitrarily designed regardless of the communication delays. The effectiveness of the proposed method is verified by a numerical simulation.

  • Wide-Sense Nonblocking W-S-W Node Architectures for Elastic Optical Networks

    Wojciech KABACIŃSKI  Mustafa ABDULSAHIB  Marek MICHALSKI  

     
    PAPER

      Pubricized:
    2018/11/22
      Vol:
    E102-B No:5
      Page(s):
    978-991

    This paper considers wide-sense nonblocking operation of the Wavelength-Space-Wavelength elastic optical switch. Six control algorithms, based on functional spectrum decomposition in interstage links and functional decomposition of center stage switches, are proposed for two switching fabric architectures. For these algorithms we derived wide-sense nonblocking conditions and compared them with strict-sense nonblocking ones. The results show that the proposed algorithm reduces the required number of frequency slot units (FSUs) or center stage switches, depending on the switching fabric architecture. Savings occur even when connections use small number of frequency slot units.

  • 2-D DOA Estimation Based on Sparse Bayesian Learning for L-Shaped Nested Array

    Lu CHEN  Daping BI  Jifei PAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/10/23
      Vol:
    E102-B No:5
      Page(s):
    992-999

    In sparsity-based optimization problems for two dimensional (2-D) direction-of-arrival (DOA) estimation using L-shaped nested arrays, one of the major issues is computational complexity. A 2-D DOA estimation algorithm is proposed based on reconsitution sparse Bayesian learning (RSBL) and cross covariance matrix decomposition. A single measurement vector (SMV) model is obtained by the difference coarray corresponding to one-dimensional nested array. Through spatial smoothing, the signal measurement vector is transformed into a multiple measurement vector (MMV) matrix. The signal matrix is separated by singular values decomposition (SVD) of the matrix. Using this method, the dimensionality of the sensing matrix and data size can be reduced. The sparse Bayesian learning algorithm is used to estimate one-dimensional angles. By using the one-dimensional angle estimations, the steering vector matrix is reconstructed. The cross covariance matrix of two dimensions is decomposed and transformed. Then the closed expression of the steering vector matrix of another dimension is derived, and the angles are estimated. Automatic pairing can be achieved in two dimensions. Through the proposed algorithm, the 2-D search problem is transformed into a one-dimensional search problem and a matrix transformation problem. Simulations show that the proposed algorithm has better angle estimation accuracy than the traditional two-dimensional direction finding algorithm at low signal-to-noise ratio and few samples.

  • Bit-Error-Rate Degradation Due to Inter-Channel Crosstalk of Different Signal Format

    Naruki SHINOHARA  Koji IGARASHI  Kyo INOUE  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2018/10/26
      Vol:
    E102-B No:5
      Page(s):
    1000-1004

    Inter-channel crosstalk is one of the crucial issues in multichannel optical systems. Conventional studies assume that the crosstalk and the main signals have identical format. The present study, in contrast, considers different signal formats for the main and crosstalk lights, and shows that bit error degradation is different depending on the modulation format. Statistical properties of the crosstalk are also investigated. The result quantitatively confirms that a crosstalk light whose signal distribution is closer to a Gaussian profile causes larger degradation.

  • Multimodal Interface for Drawing Diagrams that Does not Interfere with Natural Talking and Drawing

    Xingya XU  Hirohito SHIBATA  

     
    PAPER-Electronic Displays

      Vol:
    E102-C No:5
      Page(s):
    408-415

    The aim of this research is to support real-time drawingin talking by using multimodal user interface technologies. In this situation, if talking and drawing are considered as commands by mistake during presentation, it will disturb users' natural talking and drawing. To prevent this problem, we introduce two modes of a command mode and a free mode, and explore smooth mode switching techniques that does not interfere with users' natural talking and drawing. We evaluate four techniques. Among them, a technique that specifies the command mode after actions using a pen gesture was the most effective. In this technique, users could quickly draw diagrams, and specifying mode switching didn't interfere with users' natural talk.

  • Content-Oriented Disaster Network Utilizing Named Node Routing and Field Experiment Evaluation

    Xin QI  Zheng WEN  Keping YU  Kazunori MURATA  Kouichi SHIBATA  Takuro SATO  

     
    PAPER

      Pubricized:
    2019/02/15
      Vol:
    E102-D No:5
      Page(s):
    988-997

    Low Power Wide Area Network (LPWAN) is designed for low-bandwidth, low-power, long-distance, large-scale connected IoT applications and realistic for networking in an emergency or restricted situation, so it has been proposed as an attractive communication technology to handle unexpected situations that occur during and/or after a disaster. However, the traditional LPWAN with its default protocol will reduce the communication efficiency in disaster situation because a large number of users will send and receive emergency information result in communication jams and soaring error rates. In this paper, we proposed a LPWAN based decentralized network structure as an extension of our previous Disaster Information Sharing System (DISS). Our network structure is powered by Named Node Networking (3N) which is based on the Information-Centric Networking (ICN). This network structure optimizes the excessive useless packet forwarding and path optimization problems with node name routing (NNR). To verify our proposal, we conduct a field experiment to evaluate the efficiency of packet path forwarding between 3N+LPWA structure and ICN+LPWA structure. Experimental results confirm that the load of the entire data transmission network is significantly reduced after NNR optimized the transmission path.

  • Automatic Generation Tool of FPGA Components for Robots Open Access

    Takeshi OHKAWA  Kazushi YAMASHINA  Takuya MATSUMOTO  Kanemitsu OOTSU  Takashi YOKOTA  

     
    PAPER-Design Tools

      Pubricized:
    2019/03/01
      Vol:
    E102-D No:5
      Page(s):
    1012-1019

    In order to realize intelligent robot system, it is required to process large amount of data input from complex and different kinds of sensors in a short time. FPGA is expected to improve process performance of robots due to better performance per power consumption than high performance CPU, but it has lower development productivity than software. In this paper, we discuss automatic generation of FPGA components for robots. A design tool, developed for easy integration of FPGA into robots, is proposed. The tool named cReComp can automatically convert circuit written in Verilog HDL into a software component compliant to a robot software framework ROS (Robot Operation System), which is the standard in robot development. To evaluate its productivity, we conducted a subject experiment. As a result, we confirmed that the automatic generation is effective to ease the development of FPGA components for robots.

  • Sum Throughput Maximization for MIMO Wireless Powered Communication Networks with Discrete Signal Inputs

    Feng KE  Xiaoyu HUANG  Weiliang ZENG  Yuqin LIU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/26
      Vol:
    E102-B No:5
      Page(s):
    1037-1044

    Wireless powered communication networks (WPCNs) utilize the wireless energy transfer (WET) technique to facilitate the wireless information transmission (WIT) of nodes. We propose a two-step iterative algorithm to maximize the sum throughput of the users in a MIMO WPCN with discrete signal inputs. Firstly, the optimal solution of a convex power allocation problem can be found given a fixed time allocation; Secondly, a semi closed form solution for the optimal time allocation is obtained when fixing the power allocation matrix. By optimizing the power allocation and time allocation alternately, the two-step algorithm converges to a local optimal point. Simulation results show that the proposed algorithm outperforms the conventional schemes, which consider only Gaussian inputs.

  • Efficiency-Enhancement of 2.45-GHz Energy Harvesting Circuit Using Integrated CPW-MS Structure at Low RF Input Power

    Mohamed M. MANSOUR  Haruichi KANAYA  

     
    PAPER-Electronic Circuits

      Vol:
    E102-C No:5
      Page(s):
    399-407

    This paper looks into the underlying RF energy harvesting issues at low input ambient power levels below 0 dBm where efficiency degradation is severe. The proposed design aims to improve the rectenna sensitivity, efficiency, and output DC power. In the same manner, we are using a straightforward and compact size rectenna design. The receiving antenna is a coplanar waveguide (CPW) slot monopole antenna with harmonic suppression property and a peak measured gain of 3 dBi. Also, an improved antenna radiation characteristics, e.g radiation pattern and gain covering the desired operating band (ISM 2.45 GHz), is observed. The rectifier is a voltage doubler circuit based on microstrip (MS) structure. Two architectures of rectenna were carefully designed, fabricated and tested. The first layout; antenna, and rectifier were fabricated separately and then connected using a connector. The peak efficiency (40% at -5 dBm) achieved is lower than expected. To improve the efficiency, a high compactness and simple integration between antenna and rectifier are achieved by using a smooth CPW-MS transition. This design shows improved conversion efficiency measurement results which typically agree with the simulation results. The measured peak conversion efficiency is 72% at RF power level of -7 dBm and a load resistance of 2 kΩ.

  • Efficient Hybrid DOA Estimation for Massive Uniform Linear Array

    Wei JHANG  Shiaw-Wu CHEN  Ann-Chen CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:5
      Page(s):
    721-724

    This letter presents an efficient hybrid direction of arrival (DOA) estimation scheme for massive uniform linear array. In this scheme, the DOA estimator based on a discrete Fourier transform (DFT) is first applied to acquire coarse initial DOA estimates for single data snapshot. And then, the fine DOA is accurately estimated through using the iterative search estimator within a very small region. It iteratively searches for correct DOA vector by minimizing the objective function using a Taylor series approximation of the DOA vector with the one initially estimated. Since the proposed scheme does not need to perform eigen-decomposition and spectrum search while maintaining better DOA estimates, it also has low complexity and real-time capability. Simulation results are presented to demonstrate the efficiency of the proposed scheme.

  • A Family of Counterexamples to the Central Limit Theorem Based on Binary Linear Codes Open Access

    Keigo TAKEUCHI  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:5
      Page(s):
    738-740

    The central limit theorem (CLT) claims that the standardized sum of a random sequence converges in distribution to a normal random variable as the length tends to infinity. We prove the existence of a family of counterexamples to the CLT for d-tuplewise independent sequences of length n for all d=2,...,n-1. The proof is based on [n, k, d+1] binary linear codes. Our result implies that d-tuplewise independence is too weak to justify the CLT, even if the size d grows linearly in length n.

  • Robust Phase Estimation of a Hybrid Monte Carlo/Finite Memory Digital Phase-Locked Loop

    Sang-Su LEE  Sung-Hyun YOU  Seok-Kyoon KIM  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2019/02/22
      Vol:
    E102-D No:5
      Page(s):
    1089-1092

    Digital phase-locked loops (DPLLs) have been designed in a number of ways to correctly generate pulse signals in various systems. However, the existing DPLLs have poor acquisition performance or are prone to the divergence phenomenon when modeling and/or round-off errors exist and the noise statistics are incorrect. In this paper, we propose a novel DPLL whose phase estimator is designed in hybrid form that utilizes the advantages of Monte Carlo estimation, which is robust to nonlinear effects such as measurement quantization, and a finite memory estimator, which is robust against incorrect noise information and system model mismatch. The robustness of the proposed hybrid Monte Carlo/finite memory DPLL is demonstrated by comparing its phase estimation performance via a numerical example.

  • Error Rate Analysis of DF Cooperative Network Based on Distributed STBCs Employing Antenna Switching Technique

    Minhwan CHOI  Hoojin LEE  Haewoon NAM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:5
      Page(s):
    741-746

    This letter presents a comprehensive analytical framework for average pairwise error probability (PEP) of decode-and-forward cooperative network based on various distributed space-time block codes (DSTBCs) with antenna switching (DDF-AS) technique over quasi-static Rayleigh fading channels. Utilizing the analytical framework, exact and asymptotic PEP expressions can be effectively formulated, which are based on the Lauricella multiplicative hypergeometric function, when various DSTBCs are adopted for the DDF-AS system. The derived asymptotic PEP formulas and some numerical results enable us to verify that the DDF-AS scheme outperforms the conventional cooperative schemes in terms of error rate performance. Furthermore, the asymptotic PEP formulas can also provide explicit and useful insights into the full diversity transmission achieved by the DDF-AS system.

2161-2180hit(21534hit)