The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

2221-2240hit(21534hit)

  • Learning of Nonnegative Matrix Factorization Models for Inconsistent Resolution Dataset Analysis

    Masahiro KOHJIMA  Tatsushi MATSUBAYASHI  Hiroshi SAWADA  

     
    INVITED PAPER

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:4
      Page(s):
    715-723

    Due to the need to protect personal information and the impracticality of exhaustive data collection, there is increasing need to deal with datasets with various levels of granularity, such as user-individual data and user-group data. In this study, we propose a new method for jointly analyzing multiple datasets with different granularity. The proposed method is a probabilistic model based on nonnegative matrix factorization, which is derived by introducing latent variables that indicate the high-resolution data underlying the low-resolution data. Experiments on purchase logs show that the proposed method has a better performance than the existing methods. Furthermore, by deriving an extension of the proposed method, we show that the proposed method is a new fundamental approach for analyzing datasets with different granularity.

  • In Situ Measurement of Radiated Emissions Based on Array Signal Processing and Adaptive Noise Cancellation

    Peng LI  Zhongyuan ZHOU  Mingjie SHENG  Qi ZHOU  Peng HU  

     
    PAPER-Electromagnetic Theory

      Vol:
    E102-C No:4
      Page(s):
    371-379

    This paper presents a method combining array signal processing and adaptive noise cancellation to suppress unwanted ambient interferences in in situ measurement of radiated emissions of equipment. First, the signals received by the antenna array are processed to form a main data channel and an auxiliary data channel. The main channel contains the radiated emissions of the equipment under test and the attenuated ambient interferences. The auxiliary channel only contains the attenuated ambient interferences. Then, the adaptive noise cancellation technique is used to suppress the ambient interferences based on the correlation of the interferences in the main and auxiliary channels. The proposed method overcomes the problem that the ambient interferences in the two channels of the virtual chamber method are not correlated, and realizes the suppression of multi-source ambient noises in the use of fewer array elements. The results of simulation and experiment show that the proposed method can effectively extract radiated emissions of the equipment under test in complex electromagnetic environment. Finally, discussions on the effect of the beam width of the main channel and the generalization of the proposed method to three dimensionally distributed signals are addressed.

  • NFRR: A Novel Family Relationship Recognition Algorithm Based on Telecom Social Network Spectrum

    Kun NIU  Haizhen JIAO  Cheng CHENG  Huiyang ZHANG  Xiao XU  

     
    PAPER

      Pubricized:
    2019/01/11
      Vol:
    E102-D No:4
      Page(s):
    759-767

    There are different types of social ties among people, and recognizing specialized types of relationship, such as family or friend, has important significance. It can be applied to personal credit, criminal investigation, anti-terrorism and many other business scenarios. So far, some machine learning algorithms have been used to establish social relationship inferencing models, such as Decision Tree, Support Vector Machine, Naive Bayesian and so on. Although these algorithms discover family members in some context, they still suffer from low accuracy, parameter sensitive, and weak robustness. In this work, we develop a Novel Family Relationship Recognition (NFRR) algorithm on telecom dataset for identifying one's family members from its contact list. In telecom dataset, all attributes are divided into three series, temporal, spatial and behavioral. First, we discover the most probable places of residence and workplace by statistical models, then we aggregate data and select the top-ranked contacts as the user's intimate contacts. Next, we establish Relational Spectrum Matrix (RSM) of each user and its intimate contacts to form communication feature. Then we search the user's nearest neighbors in labelled training set and generate its Specialized Family Spectrum (SFS). Finally, we decide family relationship by comparing the similarity between RSM of intimate contacts and the SFS. We conduct complete experiments to exhibit effectiveness of the proposed algorithm, and experimental results also show that it has a lower complexity.

  • Trading Accuracy for Power with a Configurable Approximate Adder

    Toshinori SATO  Tongxin YANG  Tomoaki UKEZONO  

     
    PAPER

      Vol:
    E102-C No:4
      Page(s):
    260-268

    Approximate computing is a promising paradigm to realize fast, small, and low power characteristics, which are essential for modern applications, such as Internet of Things (IoT) devices. This paper proposes the Carry-Predicting Adder (CPredA), an approximate adder that is scalable relative to accuracy and power consumption. The proposed CPredA improves the accuracy of a previously studied adder by performing carry prediction. Detailed simulations reveal that, compared to the existing approximate adder, accuracy is improved by approximately 50% with comparable energy efficiency. Two application-level evaluations demonstrate that the proposed approximate adder is sufficiently accurate for practical use.

  • Optical QPSK Signal Quality Degradation due to Phase Error of Pump Light in Optical Parametric Phase-Sensitive Amplifier Repeaters

    Takeshi KIMURA  Yasuhiro OKAMURA  Atsushi TAKADA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/10/10
      Vol:
    E102-B No:4
      Page(s):
    810-817

    The influence of pump phase error on phase-sensitive optical amplifier (PSA) repeaters and the waveform degradation due to chromatic dispersion and fiber nonlinearities in the optical multi-relay transmission of quadrature phase-shift keying phase-conjugated twin waves are considered theoretically. First, the influence of noise from the pump phase error, optical local oscillator, receiver, and the amplified spontaneous-emission (ASE) in PSA repeaters is investigated with the assumption that transmission fibers are linear lossy channels. The bit-error rate (BER) is estimated as a function of the signal-to-noise ratio, and the relationship between the number of transmission relays and the fiber launch power is clarified. Waveform degradation due to chromatic dispersion and the optical fiber nonlinearities in transmission fibers are investigated with the noiseless condition, and the maximum repeatable number as a function of the fiber launch power is calculated. Finally, we show the relationship among the maximum repeatable number, standard deviation of pump phase error in PSA repeaters, and the fiber launch power to clarify the optimum transmission condition with consideration of the noise and the waveform degradation.

  • A Power-Efficient Pulse-VCO for Chip-Scale Atomic Clock

    Haosheng ZHANG  Aravind THARAYIL NARAYANAN  Hans HERDIAN  Bangan LIU  Rui WU  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER

      Vol:
    E102-C No:4
      Page(s):
    276-286

    This paper presents a high power efficient pulse VCO with tail-filter for the chip-scale atomic clock (CSAC) application. The stringent power and clock stability specifications of next-generation CSAC demand a VCO with ultra-low power consumption and low phase noise. The proposed VCO architecture aims for the high power efficiency, while further reducing the phase noise using tail filtering technique. The VCO has been implemented in a standard 45nm SOI technology for validation. At an oscillation frequency of 5.0GHz, the proposed VCO achieves a phase noise of -120dBc/Hz at 1MHz offset, while consuming 1.35mW. This translates into an FoM of -191dBc/Hz.

  • Designing a Framework for Data Quality Validation of Meteorological Data System Open Access

    Wen-Lung TSAI  Yung-Chun CHAN  

     
    PAPER

      Pubricized:
    2019/01/22
      Vol:
    E102-D No:4
      Page(s):
    800-809

    In the current era of data science, data quality has a significant and critical impact on business operations. This is no different for the meteorological data encountered in the field of meteorology. However, the conventional methods of meteorological data quality control mainly focus on error detection and null-value detection; that is, they only consider the results of the data output but ignore the quality problems that may also arise in the workflow. To rectify this issue, this paper proposes the Total Meteorological Data Quality (TMDQ) framework based on the Total Quality Management (TQM) perspective, especially considering the systematic nature of data warehousing and process focus needs. In practical applications, this paper uses the proposed framework as the basis for the development of a system to help meteorological observers improve and maintain the quality of meteorological data in a timely and efficient manner. To verify the feasibility of the proposed framework and demonstrate its capabilities and usage, it was implemented in the Tamsui Meteorological Observatory (TMO) in Taiwan. The four quality dimension indicators established through the proposed framework will help meteorological observers grasp the various characteristics of meteorological data from different aspects. The application and research limitations of the proposed framework are discussed and possible directions for future research are presented.

  • Toward Scalable Superconducting Quantum Computer Implementation Open Access

    Yutaka TABUCHI  Shuhei TAMATE  Yasunobu NAKAMURA  

     
    INVITED PAPER

      Vol:
    E102-C No:3
      Page(s):
    212-216

    In this paper, we briefly review the concept of superconducting quantum computers and discuss their hardware architecture. We also describe the necessary technologies for the development of a medium-scale quantum computer with more than tens of thousands of quantum bits.

  • Single-Photon Measurement Techniques with a Superconducting Transition Edge Sensor Open Access

    Daiji FUKUDA  

     
    INVITED PAPER

      Vol:
    E102-C No:3
      Page(s):
    230-234

    The optical-transition edge sensors are single-photon detectors that can determine photon energies at visible to telecommunication wavelengths. They offer a high detection efficiency and negligible dark count, which are very attractive qualities for applications in quantum optics or bioimaging. This study reviews the operating principles of such detectors and the current status of their development.

  • TCP Using Adaptive FEC to Improve Throughput Performance in High-Latency Environments Open Access

    Yurino SATO  Hiroyuki KOGA  Takeshi IKENAGA  

     
    PAPER-Network

      Pubricized:
    2018/09/06
      Vol:
    E102-B No:3
      Page(s):
    537-544

    Packet losses significantly degrade TCP performance in high-latency environments. This is because TCP needs at least one round-trip time (RTT) to recover lost packets. The recovery time will grow longer, especially in high-latency environments. TCP keeps transmission rate low while lost packets are recovered, thereby degrading throughput. To prevent this performance degradation, the number of retransmissions must be kept as low as possible. Therefore, we propose a scheme to apply a technology called “forward error correction” (FEC) to the entire TCP operation in order to improve throughput. Since simply applying FEC might not work effectively, three function, namely, controlling redundancy level and transmission rate, suppressing the return of duplicate ACKs, interleaving redundant packets, were devised. The effectiveness of the proposed scheme was demonstrated by simulation evaluations in high-latency environments.

  • Security Performance Analysis for Relay Selection in Cooperative Communication System under Nakagami-m Fading Channel

    Guangna ZHANG  Yuanyuan GAO  Huadong LUO  Nan SHA  Shijie WANG  Kui XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/09/14
      Vol:
    E102-B No:3
      Page(s):
    603-612

    In this paper, we investigate a cooperative communication system comprised of a source, a destination, and multiple decode-and-forward (DF) relays in the presence of a potential malicious eavesdropper is within or without the coverage area of the source. Based on the more general Nakagami-m fading channels, we analyze the security performance of the single-relay selection and multi-relay selection schemes for protecting the source against eavesdropping. In the single-relay selection scheme, only the best relay is chosen to assist in the source transmission. Differing from the single-relay selection, multi-relay selection scheme allows multiple relays to forward the source to the destination. We also consider the classic direct transmission as a benchmark scheme to compare with the two relay selection schemes. We derive the exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the direct transmission, the single-relay selection as well as the multi-relay selection scheme over Nakagami-m fading channel when the eavesdropper is within and without the coverage area of the source. Moreover, the security-reliability tradeoff (SRT) of these three schemes are also analyzed. It is verified that the SRT of the multi-relay selection consistently outperforms the single-relay selection, which of both the single-relay and multi-relay selection schemes outperform the direct transmission when the number of relays is large, no matter the eavesdropper is within or without the coverage of the source. In addition, as the number of DF relays increases, the SRT of relay selection schemes improve notably. However, the SRT of both two relay selection approaches become worse when the eavesdropper is within the coverage area of the source.

  • A Dynamic-Clustering Backup Scheme for High-Availability Distributed File Sharing Systems

    Hoai Son NGUYEN   Dinh Nghia NGUYEN  Shinji SUGAWARA  

     
    PAPER-Network

      Pubricized:
    2018/09/10
      Vol:
    E102-B No:3
      Page(s):
    545-556

    DHT routing algorithms can provide efficient mechanisms for resource placement and lookup for distributed file sharing systems. However, we must still deal with irregular and frequent join/leave of nodes and the problem of load unbalancing between nodes in DHT-based file sharing systems. This paper presents an efficient file backup scheme based on dynamic DHT key space clustering in order to guarantee data availability and support load balancing. The main idea of our method is to dynamically divide the DHT network into a number of clusters, each of which locally stores and maintains data chunks of data files to guarantee the data availability of user data files even when node churn occurs. Further, high-capacity nodes in clusters are selected as backup nodes to achieve adequate load balancing. Simulation results demonstrate the superior effectiveness of the proposed scheme over other file replication schemes.

  • Congestion Avoidance Using Multiple Virtual Networks

    Tsuyoshi OGURA  Tatsuya FUJII  

     
    PAPER-Network

      Pubricized:
    2018/08/31
      Vol:
    E102-B No:3
      Page(s):
    557-570

    If a shared IP network is to deliver large-volume streaming media content, such as real-time videos, we need a technique for explicitly setting and dynamically changing the transmission paths used to respond to the congestion situation of the network, including multi-path transmission of a single-flow, to maximize network bandwidth utilization and stabilize transmission quality. However, current technologies cannot realize flexible multi-path transmission because they require complicated algorithms for route searching and the control load for route changing is excessive. This paper proposes a scheme that realizes routing control for multi-path transmission by combining multiple virtual networks on the same physical network. The proposed scheme lowers the control load incurred in creating a detour route because routing control is performed by combining existing routing planes. In addition, our scheme simplifies route searching procedure because congestion avoidance control of multi-path transmission can be realized by the control of a single path. An experiment on the JGN-X network virtualization platform finds that while the time taken to build an inter-slice link must be improved, the time required to inspect whether each slice has virtual nodes that can be connected to the original slice and be used as a detour destination can be as short as 40 microseconds per slice even with large slices having more than 100 virtual nodes.

  • Resilient Edge: A Scalable, Robust Network Function Backend

    Yutaro HAYAKAWA  Kenichi YASUKATA  Jin NAKAZAWA  Michio HONDA  

     
    PAPER-Information Network

      Pubricized:
    2018/12/04
      Vol:
    E102-D No:3
      Page(s):
    550-558

    Increasing hardware resources, such as multi-core and multi-socket CPUs, memory capacity and high-speed NICs, impose significant challenges on Network Function Virtualization (NFV) backends. They increase the potential numbers of per-server NFs or tenants, which requires a packet switching architecture that is not only scalable to large number of virtual ports, but also robust to attacks on the data plane. This is a real problem; a recent study has reported that Open vSwitch, a widely used software switch, had a buffer-overflow bug in its data plane that results the entire SDN domain to be hijacked by worms propagated in the network. In order to address this problem, we propose REdge. It scales to thousands of virtual ports or NFs (as opposed to hundreds in the current state-of-the art), and protect modular, flexible packet switching logic against various bugs, such as buffer overflow and other unexpected operations using static program checking. When 2048 NFs are active and packets are distributed to them based on the MAC or IP addresses, REdge achieves 3.16 Mpps or higher packet forwarding rates for 60 byte packets and achieves the wire rate for 1500 byte packets in the 25 Gbps link.

  • A Deadline-Aware Scheduling Scheme for Connected Car Services Using Mobile Networks with Quality Fluctuation Open Access

    Nobuhiko ITOH  Motoki MORITA  Takanori IWAI  Kozo SATODA  Ryogo KUBO  

     
    PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    474-483

    Traffic collision is an extremely serious issue in the world today. The World Health Organization (WHO) reported the number of road traffic deaths globally has plateaued at 1.25 million a year. In an attempt to decrease the occurrence of such traffic collisions, various driving systems for detecting pedestrians and vehicles have been proposed, but they are inadequate as they cannot detect vehicles and pedestrians in blind places such as sharp bends and blind intersections. Therefore, mobile networks such as long term evolution (LTE), LTE-Advanced, and 5G networks are attracting a great deal of attention as platforms for connected car services. Such platforms enable individual devices such as vehicles, drones, and sensors to exchange real-time information (e.g., location information) with each other. To guarantee effective connected car services, it is important to deliver a data block within a certain maximum tolerable delay (called a deadline in this work). The Third Generation Partnership Project (3GPP) stipulates that this deadline be 100 ms and that the arrival ratio within the deadline be 0.95. We investigated an intersection at which vehicle collisions often occur to evaluate a realistic environment and found that schedulers such as proportional fairness (PF) and payload-size and deadline-aware (PayDA) cannot satisfy the deadline and arrival ratio within the deadline, especially as network loads increase. They fail because they do not consider three key elements — radio quality, chunk size, and the deadline — when radio resources are allocated. In this paper, we propose a deadline-aware scheduling scheme that considers chunk size and the deadline in addition to radio quality and uses them to prioritize users in order to meet the deadline. The results of a simulation on ns-3 showed that the proposed method can achieve approximately four times the number of vehicles satisfying network requirements compared to PayDA.

  • Induced Synchronization of Chaos-Chaos Intermittency Maintaining Asynchronous State of Chaotic Orbits by External Feedback Signals Open Access

    Sou NOBUKAWA  Haruhiko NISHIMURA  Teruya YAMANISHI  Hirotaka DOHO  

     
    PAPER-Nonlinear Problems

      Vol:
    E102-A No:3
      Page(s):
    524-531

    It is well-known that chaos synchronization in coupled chaotic systems arises from conditions with specific coupling, such as complete, phase, and generalized synchronization. Recently, several methods for controlling this chaos synchronization using a nonlinear feedback controller have been proposed. In this study, we applied a proposed reducing range of orbit feedback method to coupled cubic maps in order to control synchronization of chaos-chaos intermittency. By evaluating the system's behavior and its dependence on the feedback and coupling strength, we confirmed that synchronization of chaos-chaos intermittency could be induced using this nonlinear feedback controller, despite the fact that the asynchronous state within a unilateral attractor is maintained. In particular, the degree of synchronization is high at the edge between the chaos-chaos intermittency parameter region for feedback strength and the non-chaos-chaos intermittency region. These characteristics are largely maintained on large-scale coupled cubic maps.

  • Program File Placement Problem for Machine-to-Machine Service Network Platform Open Access

    Takehiro SATO  Eiji OKI  

     
    PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    418-428

    The Machine-to-Machine (M2M) service network platform accommodates M2M communications traffic efficiently by using tree-structured networks and the computation resources deployed on network nodes. In the M2M service network platform, program files required for controlling devices are placed on network nodes, which have different amounts of computation resources according to their position in the hierarchy. The program files must be dynamically repositioned in response to service quality requests from each device, such as computation power, link bandwidth, and latency. This paper proposes a Program File Placement (PFP) method for the M2M service network platform. First, the PFP problem is formulated in the Mixed-Integer Linear Programming (MILP) approach. We prove that the decision version of the PFP problem is NP-complete. Next, we present heuristic algorithms that attain sub-optimal but attractive solutions. Evaluations show that the heuristic algorithm based on the number of devices that share a program file reduces the total number of placed program files compared to the algorithm that moves program files based on their position.

  • VHDL vs. SystemC: Design of Highly Parameterizable Artificial Neural Networks

    David ALEDO  Benjamin CARRION SCHAFER  Félix MORENO  

     
    PAPER-Computer System

      Pubricized:
    2018/11/29
      Vol:
    E102-D No:3
      Page(s):
    512-521

    This paper describes the advantages and disadvantages observed when describing complex parameterizable Artificial Neural Networks (ANNs) at the behavioral level using SystemC and at the Register Transfer Level (RTL) using VHDL. ANNs are complex to parameterize because they have a configurable number of layers, and each one of them has a unique configuration. This kind of structure makes ANNs, a priori, challenging to parameterize using Hardware Description Languages (HDL). Thus, it seems intuitively that ANNs would benefit from the raise in level of abstraction from RTL to behavioral level. This paper presents the results of implementing an ANN using both levels of abstractions. Results surprisingly show that VHDL leads to better results and allows a much higher degree of parameterization than SystemC. The implementation of these parameterizable ANNs are made open source and are freely available online. Finally, at the end of the paper we make some recommendation for future HLS tools to improve their parameterization capabilities.

  • The Complexity of Induced Tree Reconfiguration Problems

    Kunihiro WASA  Katsuhisa YAMANAKA  Hiroki ARIMURA  

     
    PAPER

      Pubricized:
    2018/10/30
      Vol:
    E102-D No:3
      Page(s):
    464-469

    Given two feasible solutions A and B, a reconfiguration problem asks whether there exists a reconfiguration sequence (A0=A, A1,...,Aℓ=B) such that (i) A0,...,Aℓ are feasible solutions and (ii) we can obtain Ai from Ai-1 under the prescribed rule (the reconfiguration rule) for each i ∈ {1,...,ℓ}. In this paper, we address the reconfiguration problem for induced trees, where an induced tree is a connected and acyclic induced subgraph of an input graph. We consider the following two rules as the prescribed rules: Token Jumping: removing u from an induced tree and adding v to the tree, and Token Sliding: removing u from an induced tree and adding v adjacent to u to the tree, where u and v are vertices of an input graph. As the main results, we show that (I) the reconfiguration problemis PSPACE-complete even if the input graph is of bounded maximum degree, (II) the reconfiguration problem is W[1]-hard when parameterized by both the size of induced trees and the length of the reconfiguration sequence, and (III) there exists an FPT algorithm when the problem is parameterized by both the size of induced trees and the maximum degree of an input graph under Token Jumping and Token Sliding.

  • Modification of Velvet Noise for Speech Waveform Generation by Using Vocoder-Based Speech Synthesizer Open Access

    Masanori MORISE  

     
    LETTER-Speech and Hearing

      Pubricized:
    2018/12/05
      Vol:
    E102-D No:3
      Page(s):
    663-665

    This paper introduces a new noise generation algorithm for vocoder-based speech waveform generation. White noise is generally used for generating an aperiodic component. Since short-term white noise includes a zero-frequency component (ZFC) and inaudible components below 20 Hz, they are reduced in advance when synthesizing. We propose a new noise generation algorithm based on that for velvet noise to overcome the problem. The objective evaluation demonstrated that the proposed algorithm can reduce the unwanted components.

2221-2240hit(21534hit)