The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

10501-10520hit(21534hit)

  • Estimating Periodic Software Rejuvenation Schedules under Discrete-Time Operation Circumstance

    Kazuki IWAMOTO  Tadashi DOHI  Naoto KAIO  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:1
      Page(s):
    23-31

    Software rejuvenation is a preventive and proactive solution that is particularly useful for counteracting the phenomenon of software aging. In this article, we consider periodic software rejuvenation models based on the expected cost per unit time in the steady state under discrete-time operation circumstance. By applying the discrete renewal reward processes, we describe the stochastic behavior of a telecommunication billing application with a degradation mode, and determine the optimal periodic software rejuvenation schedule minimizing the expected cost. Similar to the earlier work by the same authors, we develop a statistically non-parametric algorithm to estimate the optimal software rejuvenation schedule, by applying the discrete total time on test concept. Numerical examples are presented to estimate the optimal software rejuvenation schedules from the simulation data. We discuss the asymptotic behavior of estimators developed in this paper.

  • Fullband Simulation of Nano-Scale MOSFETs Based on a Non-equilibrium Green's Function Method

    Helmy FITRIAWAN  Matsuto OGAWA  Satofumi SOUMA  Tanroku MIYOSHI  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E91-C No:1
      Page(s):
    105-109

    The analysis of multiband quantum transport simulation in double-gate metal oxide semiconductor field effects transistors (DG-MOSFETs) is performed based on a non-equilibrium Green's function (NEGF) formalism coupled self-consistently with the Poisson equation. The empirical sp3s* tight binding approximation (TBA) with nearest neighbor coupling is employed to obtain a realistic multiband structure. The effects of non-parabolic bandstructure as well as anisotropic features of Si are studied and analyzed. As a result, it is found that the multiband simulation results on potential and current profiles show significant differences, especially in higher applied bias, from those of conventional effective mass model.

  • Security of the Five-Round KASUMI Type Permutation

    Tetsu IWATA  Tohru YAGI  Kaoru KUROSAWA  

     
    PAPER-Symmetric Cryptography

      Vol:
    E91-A No:1
      Page(s):
    30-38

    KASUMI is a blockcipher that forms the heart of the 3GPP confidentiality and integrity algorithms. In this paper, we study the security of the five-round KASUMI type permutations, and derive a highly non-trivial security bound against adversaries with adaptive chosen plaintext and chosen ciphertext attacks. To derive our security bound, we heavily use the tools from graph theory. However the result does not show its super-pseudorandomness, this gives us a strong evidence that the design of KASUMI is sound.

  • Research on the Road Network Extraction from Satellite Imagery

    Lili YUN  Keiichi UCHIMURA  

     
    LETTER-Intelligent Transport System

      Vol:
    E91-A No:1
      Page(s):
    433-436

    In this letter, a semi-automatic method for road network extraction from high-resolution satellite images is proposed. First, we focus on detecting the seed points in candidate road regions using a method of self-organizing map (SOM). Then, an approach to road tracking is presented, searching for connected points in the direction and candidate domain of a road. A study of Geographical Information Systems (GIS) using high-resolution satellite images is presented in this letter. Experimental results verified the effectiveness and efficiency of this approach.

  • Diversification of Processors Based on Redundancy in Instruction Set

    Shuichi ICHIKAWA  Takashi SAWADA  Hisashi HATA  

     
    PAPER-Implementation

      Vol:
    E91-A No:1
      Page(s):
    211-220

    By diversifying processor architecture, computer software is expected to be more resistant to plagiarism, analysis, and attacks. This study presents a new method to diversify instruction set architecture (ISA) by utilizing the redundancy in the instruction set. Our method is particularly suited for embedded systems implemented with FPGA technology, and realizes a genuine instruction set randomization, which has not been provided by the preceding studies. The evaluation results on four typical ISAs indicate that our scheme can provide a far larger degree of freedom than the preceding studies. Diversified processors based on MIPS architecture were actually implemented and evaluated with Xilinx Spartan-3 FPGA. The increase of logic scale was modest: 5.1% in Specialized design and 3.6% in RAM-mapped design. The performance overhead was also modest: 3.4% in Specialized design and 11.6% in RAM-mapped design. From these results, our scheme is regarded as a practical and promising way to secure FPGA-based embedded systems.

  • Implementation of Joint Pre-FFT Adaptive Array Antenna and Post-FFT Space Diversity Combining for Mobile ISDB-T Receiver

    Dang Hai PHAM  Jing GAO  Takanobu TABATA  Hirokazu ASATO  Satoshi HORI  Tomohisha WADA  

     
    PAPER-Enabling Technology

      Vol:
    E91-B No:1
      Page(s):
    127-138

    In our application targeted here, four on-glass antenna elements are set in an automobile to improve the reception quality of mobile ISDB-T receiver. With regard to the directional characteristics of each antenna, we propose and implement a joint Pre-FFT adaptive array antenna and Post-FFT space diversity combining (AAA-SDC) scheme for mobile ISDB-T receiver. By applying a joint hardware and software approach, a flexible platform is realized in which several system configuration schemes can be supported; the receiver can be reconfigured on the fly. Simulation results show that the AAA-SDC scheme drastically improves the performance of mobile ISDB-T receiver, especially in the region of large Doppler shift. The experimental results from a field test also confirm that the proposed AAA-SDC scheme successfully achieves an outstanding reception rate up to 100% while moving at the speed of 80 km/h.

  • Powered Tate Pairing Computation

    Bo Gyeong KANG  Je Hong PARK  

     
    LETTER

      Vol:
    E91-A No:1
      Page(s):
    338-341

    In this letter, we provide a simple proof of bilinearity for the eta pairing. Based on it, we show an efficient method to compute the powered Tate pairing as well. Although efficiency of our method is equivalent to that of the Tate pairing on the eta pairing approach, but ours is more general in principle.

  • Relationship between Standard Model Plaintext Awareness and Message Hiding

    Isamu TERANISHI  Wakaha OGATA  

     
    PAPER-Security Notions

      Vol:
    E91-A No:1
      Page(s):
    244-261

    Recently, Bellare and Palacio defined the plaintext awareness (PA-ness) in the standard model. In this paper, we study the relationship between the standard model PA-ness and the property about message hiding, that is, IND-CPA. Although these two notions seem to be independent at first glance, we show that PA-ness in the standard model implies the IND-CPA security if the encryption function is oneway. By using this result, we also showed that "PA + Oneway ⇒ IND-CCA2." We also show that the computational PA-ness notion is strictly stronger than the statistical one.

  • Call-Level Performance Modelling of Elastic and Adaptive Service-Classes with Finite Population

    Vassilios G. VASSILAKIS  Ioannis D. MOSCHOLIOS  Michael D. LOGOTHETIS  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E91-B No:1
      Page(s):
    151-163

    The call-level performance modelling is a challenge in the highly heterogeneous environment of modern telecom networks, due to the presence of elastic traffic. In this paper, we review existing teletraffic loss models and propose a model for elastic traffic of service-classes with finite population (quasi-random call arrival process). Upon arrival, calls have contingency alternative bandwidth requirements that depend on thresholds which indicate the available/occupied link bandwidth (state dependent model). Calls are admitted under the complete sharing policy, and can tolerate bandwidth compression, while in-service. We prove a recurrent formula for the efficient calculation of the link occupancy distribution and consequently the call blocking probabilities and link utilization. The accuracy of the proposed model is verified by simulation and is found to be quite satisfactory. Comparative results with other existing models show the necessity and the effectiveness of the proposed model. Its potential applications are mainly in the environment of wireless networks.

  • An ILP Approach to the Simultaneous Application of Operation Scheduling and Power Management

    Shih-Hsu HUANG  Chun-Hua CHENG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:1
      Page(s):
    375-382

    At the behavioral level, large power savings are possible by shutting down unused operations, which is commonly referred to as power management. However, operation scheduling has a significant impact on the potential for power saving via power management. In this paper, we present an integer linear programming (ILP) model to formally formulate the simultaneous application of operation scheduling and power management in high level synthesis. Our objective is to maximize the power saving under both the timing constraints and the resource constraints. Note that our approach guarantees solving the problem optimally. Compared with previous work, experimental data consistently show that our approach has significant relative improvement in the power savings.

  • Frequency-Diversity Patch Antenna for WiBro and Satellite-DMB

    Seung-Bok BYUN  Jeong-An LEE  Jong-Hyuk LIM  Tae-Yeoul YUN  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:1
      Page(s):
    385-387

    This letter presents a reconfigurable antenna with a microstrip patch that uses PIN-diode connections on slits to achieve frequency diversity. By switching the diodes on or off, a surface current path on the antenna is changed, which effectively results in shifting the operating frequency. Thus the antenna can select both WiBro and DMB bands.

  • Asymptotic Performance Analysis of Orthogonal Space-Time Block Codes in Spatially Correlated Rician Fading Channel

    Kyung Seung AHN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E91-A No:1
      Page(s):
    426-429

    In this letter, we analyze symbol error probability (SEP) and diversity gain of orthogonal space-time block codes (OSTBCs) in spatially correlated Rician fading channel. We derive the moment generating function (MGF) of an effective signal-to-noise ratio (SNR) at the receiver and use it to derive the SEP for M-PSK modulation. We use this result to show that the diversity gain is achieved by the product of the rank of the transmit and receive correlation matrix, and the loss in array gain is quantified as a function of the spatial correlation and the line of sight (LOS) component.

  • Some Efficient Algorithms for the Final Exponentiation of ηT Pairing

    Masaaki SHIRASE  Tsuyoshi TAKAGI  Eiji OKAMOTO  

     
    PAPER-Implementation

      Vol:
    E91-A No:1
      Page(s):
    221-228

    Recently Tate pairing and its variations are attracted in cryptography. Their operations consist of a main iteration loop and a final exponentiation. The final exponentiation is necessary for generating a unique value of the bilinear pairing in the extension fields. The speed of the main loop has become fast by the recent improvements, e.g., the Duursma-Lee algorithm and ηT pairing. In this paper we discuss how to enhance the speed of the final exponentiation of the ηT pairing in the extension field F36n. Indeed, we propose some efficient algorithms using the torus T2(F33n) that can efficiently compute an inversion and a powering by 3n + 1. Consequently, the total processing cost of computing the ηT pairing can be reduced by 16% for n=97.

  • An Analysis of Leakage Factors for Dual-Rail Pre-Charge Logic Style

    Daisuke SUZUKI  Minoru SAEKI  

     
    PAPER-Side Channel Attacks

      Vol:
    E91-A No:1
      Page(s):
    184-192

    In recent years, certain countermeasures against differential power analysis (DPA) at the logic level have been proposed. Recently, Popp and Mangard proposed a new countermeasure-masked dual-rail pre-charge logic (MDPL); this countermeasure combines dual-rail circuits with random masking to improve the wave dynamic differential logic (WDDL). They claimed that it could implement secure circuits using a standard CMOS cell library without special constraints for the place-and-route method because the difference between the loading capacitances of all the pairs of complementary logic gates in MDPL can be compensated for by the random masking. In this paper, we particularly focus on the signal transition of MDPL gates and evaluate the DPA-resistance of MDPL in detail. Our evaluation results reveal that when the input signals have different delay times, leakage occurs in the MDPL as well as WDDL gates, even if MDPL is effective in reducing the leakage caused by the difference in loading capacitances. Furthermore, in order to validate our evaluation, we demonstrate a problem with different input signal delays by conducting measurements for an FPGA.

  • Discrete Modelling of Continuous-Time Systems Having Interval Uncertainties Using Genetic Algorithms

    Chen-Chien HSU  Tsung-Chi LU  Heng-Chou CHEN  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:1
      Page(s):
    357-364

    In this paper, an evolutionary approach is proposed to obtain a discrete-time state-space interval model for uncertain continuous-time systems having interval uncertainties. Based on a worst-case analysis, the problem to derive the discrete interval model is first formulated as multiple mono-objective optimization problems for matrix-value functions associated with the discrete system matrices, and subsequently optimized via a proposed genetic algorithm (GA) to obtain the lower and upper bounds of the entries in the system matrices. To show the effectiveness of the proposed approach, roots clustering of the characteristic equation of the obtained discrete interval model is illustrated for comparison with those obtained via existing methods.

  • Low Complexity Fano-Based Detection Algorithm with Iterative Structure for V-BLAST Systems

    Jongsub CHA  Hyoungsuk JEON  Hyuckjae LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    347-350

    We present a computationally efficient Fano detection algorithm with an iterative structure for V-BLAST systems. As our previous work, we introduced a Fano-based sequential detection scheme with three interrelated steps whose computational loads are excessive. To deal with the computational inefficiency, the proposed algorithm is redesigned by the addition of two steps: preparation and iterative tree searching. In particular, it employs an early stop technique to avoid the unnecessary iteration or to stop the needless searching process of the algorithm. Computer simulation shows that the proposed scheme yields significant saving in complexity with very small performance degradation, compared with sphere detection (SD).

  • Dual-Level LVDS Technique for Reducing Data Transmission Lines by Half in LCD Driver IC's

    Doo-Hwan KIM  Sung-Hyun YANG  Kyoung-Rok CHO  

     
    PAPER-Electronic Circuits

      Vol:
    E91-C No:1
      Page(s):
    72-80

    This paper proposes a dual-level low voltage differential signaling (DLVDS) circuit aimed at low power consumption and reducing transmission lines for LCD driver IC's. We apply two-bit binary data to the DLVDS circuit as inputs, and then the circuit converts these two inputs into two kinds of fully differential signal levels. In the DLVDS circuit, two transmission lines are sufficient to transfer two-bit binary inputs while keeping the conventional LVDS features. The receiver recovers the original two-bit binary data through a level decoding circuit. The proposed circuit was fabricated using a commercial 0.25 µm CMOS technology. Under a 2.5 V supply voltage, the circuit shows a data rate of 1-Gbps/2-line and power consumption of 35 mW.

  • Analysis of Program Obfuscation Schemes with Variable Encoding Technique

    Kazuhide FUKUSHIMA  Shinsaku KIYOMOTO  Toshiaki TANAKA  Kouichi SAKURAI  

     
    PAPER-Cryptanalysis

      Vol:
    E91-A No:1
      Page(s):
    316-329

    Program analysis techniques have improved steadily over the past several decades, and software obfuscation schemes have come to be used in many commercial programs. A software obfuscation scheme transforms an original program or a binary file into an obfuscated program that is more complicated and difficult to analyze, while preserving its functionality. However, the security of obfuscation schemes has not been properly evaluated. In this paper, we analyze obfuscation schemes in order to clarify the advantages of our scheme, the XOR-encoding scheme. First, we more clearly define five types of attack models that we defined previously, and define quantitative resistance to these attacks. Then, we compare the security, functionality and efficiency of three obfuscation schemes with encoding variables: (1) Sato et al.'s scheme with linear transformation, (2) our previous scheme with affine transformation, and (3) the XOR-encoding scheme. We show that the XOR-encoding scheme is superior with regard to the following two points: (1) the XOR-encoding scheme is more secure against a data-dependency attack and a brute force attack than our previous scheme, and is as secure against an information-collecting attack and an inverse transformation attack as our previous scheme, (2) the XOR-encoding scheme does not restrict the calculable ranges of programs and the loss of efficiency is less than in our previous scheme.

  • A Novel Photonic Crystal Fiber Design for Large Effective Area and High Negative Dispersion

    Nguyen Hoang HAI  Yoshinori NAMIHIRA  Feroza BEGUM  Shubi F. KAIJAGE  Tatsuya KINJO  S.M. Abdur RAZZAK  Nianyu ZOU  

     
    LETTER-Optoelectronics

      Vol:
    E91-C No:1
      Page(s):
    113-116

    In this paper, we propose and demonstrate a novel type of PCF that has two cladding layers with Ge rods at the center core. We numerically show that it is possible to design a single mode PCF with large effective area greater than 200 µm2 over the whole wavelength above 1.2 µm. The proposed large mode area PCF (LMA-PCF) exhibits a high negative dispersion coefficient from -186 to -158 [ps/(nm-km)] in all wavelengths ranging from 1.2 µm to 1.8 µm. Effective single mode operation of LMA-PCF is confimed for the entire band of interest.

  • A Perceptual Rate Control Technique for Logo Insertion in Compressed Video

    Jungwoo LEE  

     
    LETTER-Broadcast Systems

      Vol:
    E91-B No:1
      Page(s):
    392-394

    A rate control algorithm for logo insertion which does not require full decoding and encoding in compressed video is proposed. A perceptual approach is adopted in order to reduce the distortion introduced by the rate control. The start position of rate control is randomly varied for each frame so that the perceptual distortion is evenly dispersed across the whole picture. The number of rate-controlled slices is changed instead of the quantization scale in order to maintain original bit rate. Simulations show that the original bit rate can be maintained by the rate control without noticeable distortion. The proposed rate control algorithm can be easily extended to other transcoding applications.

10501-10520hit(21534hit)