The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

10541-10560hit(21534hit)

  • A Query System for Texts with Macros

    Keehang KWON  Dae-Seong KANG  Jinsoo KIM  

     
    LETTER-Automata and Formal Language Theory

      Vol:
    E91-D No:1
      Page(s):
    145-147

    We propose a query language based on extended regular expressions. This language extends texts with text-generating macros. These macros make it possible to define languages in a compressed, elegant way. This paper also extends queries with linear implications and additive (classical) conjunctions. To be precise, it allows goals of the form D —ο G and G1&G2 where D is a text or a macro and G is a query. The first goal is solved by adding D to the current text and then solving G. This goal is flexible in controlling the current text dynamically. The second goal is solved by solving both G1 and G2 from the current text. This goal is particularly useful for internet search.

  • Study on Soft Decision Based Cooperative Sensing for Cognitive Radio Networks

    Hiromasa UCHIYAMA  Kenta UMEBAYASHI  Takeo FUJII  Fumie ONO  Kei SAKAGUCHI  Yukihiro KAMIYA  Yasuo SUZUKI  

     
    PAPER-Spectrum Sensing

      Vol:
    E91-B No:1
      Page(s):
    95-101

    In this paper, we propose a soft decision based cooperative sensing method for cognitive radio (CR) networks for opportunistic frequency usage. To identify unused frequency, CR should exploit sensing technique to detect presence or absence of primary user and use this information to opportunistically provide communication among secondary users while performance of primary user should not be deteriorated by the secondary users. Because of multipath fading or shadowing, the detection of primary users may be significantly difficult. For this problem, cooperative sensing (CS), where gathered observations obtained by multiple secondary users is utilized to achieve higher performance of detection, has been investigated. We design a soft decision based CS analytically and analyze the detector in several situations, i.e., signal model where single-carrier case and multi-carrier case are assumed and two scenarios; in the first scenario, SNR values of secondary users are totally equal and in the second scenario, a certain SNR difference between secondary users is assumed. We present numerical results as follows. The first scenario shows that there is little difference between the signal models in terms of detection performance. The second scenario shows that CS is superior to non-cooperative sensing. In addition, we presents that detection performance of soft decision based CS outperform detection performance of hard decision based CS.

  • Classification of Terrain by Implementing the Correlation Coefficient in the Circular Polarization Basis Using X-Band POLSAR Data

    Yoshio YAMAGUCHI  Yukari YAMAMOTO  Hiroyoshi YAMADA  Jian YANG  Wolfgang-Martin BOERNER  

     
    PAPER-Sensing

      Vol:
    E91-B No:1
      Page(s):
    297-301

    Classification of terrain is one of the most important applications of Polarimetric Synthetic Aperture Radar (POLSAR) image analysis. This paper presents a simple method to classify terrain by the use of the correlation coefficients in the circular polarization basis together with the total power of the scattering matrix in the X-band. The reflection symmetry condition that the co-polarized and the cross-polarized correlations are close to zero for natural distributed scatterers is utilized to extract characteristic parameters of small forests or cluster of trees, and oriented urban building blocks with respect to the direction of the radar illumination. Both of these kinds of scatterers are difficult to identify in high resolution POLSAR images of complex urban areas. The indices employed here are the correlation coefficient, a modified coefficient normalized by the reflection symmetric conditional case, and the total power. It is shown that forest areas and oriented building blocks are easily detected and identified. The terrain classification yielded by these combinations is very accurate as confirmed by photographic ground truth images.

  • Intersystem Interference Reduction for Overlaid HAPS-Terrestrial CDMA System

    Jeng-Ji HUANG  Wei-Ting WANG  Mingfu LI  David SHIUNG  Huei-Wen FERNG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    334-338

    In this letter, we propose that directional antennas, combined with power management, be incorporated to reduce intersystem interference in a shared band overlaid high altitude platform station (HAPS)-terrestrial code division multiple access (CDMA) system. To eliminate the HAPS to terrestrial interference, the HAPS is accessed only via directional antennas under the proposed scheme. By doing so, the uplink power to the HAPS can accordingly be increased, so that the terrestrial to HAPS interference is also effectively suppressed.

  • Making Cryptographic Primitives Harder

    Shingo HASEGAWA  Hiroyuki HATANAKA  Shuji ISOBE  Eisuke KOIZUMI  Hiroki SHIZUYA  

     
    PAPER-Cryptanalysis

      Vol:
    E91-A No:1
      Page(s):
    330-337

    This paper studies a method for transforming ordinary cryptographic primitives to new harder primitives. Such a method is expected to lead to general schemes that make present cryptosystems secure against the attack of quantum computers. We propose a general technique to construct a new function from an ordinary primitive function f with a help of another hard function g so that the resulting function is to be new hard primitives. We call this technique a lifting of f by g. We show that the lifted function is harder than original functions under some simple conditions.

  • Frequency-Diversity Patch Antenna for WiBro and Satellite-DMB

    Seung-Bok BYUN  Jeong-An LEE  Jong-Hyuk LIM  Tae-Yeoul YUN  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:1
      Page(s):
    385-387

    This letter presents a reconfigurable antenna with a microstrip patch that uses PIN-diode connections on slits to achieve frequency diversity. By switching the diodes on or off, a surface current path on the antenna is changed, which effectively results in shifting the operating frequency. Thus the antenna can select both WiBro and DMB bands.

  • Fullband Simulation of Nano-Scale MOSFETs Based on a Non-equilibrium Green's Function Method

    Helmy FITRIAWAN  Matsuto OGAWA  Satofumi SOUMA  Tanroku MIYOSHI  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E91-C No:1
      Page(s):
    105-109

    The analysis of multiband quantum transport simulation in double-gate metal oxide semiconductor field effects transistors (DG-MOSFETs) is performed based on a non-equilibrium Green's function (NEGF) formalism coupled self-consistently with the Poisson equation. The empirical sp3s* tight binding approximation (TBA) with nearest neighbor coupling is employed to obtain a realistic multiband structure. The effects of non-parabolic bandstructure as well as anisotropic features of Si are studied and analyzed. As a result, it is found that the multiband simulation results on potential and current profiles show significant differences, especially in higher applied bias, from those of conventional effective mass model.

  • Estimating Periodic Software Rejuvenation Schedules under Discrete-Time Operation Circumstance

    Kazuki IWAMOTO  Tadashi DOHI  Naoto KAIO  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:1
      Page(s):
    23-31

    Software rejuvenation is a preventive and proactive solution that is particularly useful for counteracting the phenomenon of software aging. In this article, we consider periodic software rejuvenation models based on the expected cost per unit time in the steady state under discrete-time operation circumstance. By applying the discrete renewal reward processes, we describe the stochastic behavior of a telecommunication billing application with a degradation mode, and determine the optimal periodic software rejuvenation schedule minimizing the expected cost. Similar to the earlier work by the same authors, we develop a statistically non-parametric algorithm to estimate the optimal software rejuvenation schedule, by applying the discrete total time on test concept. Numerical examples are presented to estimate the optimal software rejuvenation schedules from the simulation data. We discuss the asymptotic behavior of estimators developed in this paper.

  • Low Complexity Fano-Based Detection Algorithm with Iterative Structure for V-BLAST Systems

    Jongsub CHA  Hyoungsuk JEON  Hyuckjae LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    347-350

    We present a computationally efficient Fano detection algorithm with an iterative structure for V-BLAST systems. As our previous work, we introduced a Fano-based sequential detection scheme with three interrelated steps whose computational loads are excessive. To deal with the computational inefficiency, the proposed algorithm is redesigned by the addition of two steps: preparation and iterative tree searching. In particular, it employs an early stop technique to avoid the unnecessary iteration or to stop the needless searching process of the algorithm. Computer simulation shows that the proposed scheme yields significant saving in complexity with very small performance degradation, compared with sphere detection (SD).

  • NPMV-Complete Functions That Compute Discrete Logarithms and Integer Factorization

    Shingo HASEGAWA  Shuji ISOBE  Hiroki SHIZUYA  

     
    LETTER

      Vol:
    E91-A No:1
      Page(s):
    342-344

    We define two functions fDL and fIF in NPMV, the class of all partial, multivalued functions computed nondeterministically in polynomial time. We prove that they are complete for NPMV, and show that (a) computing discrete logarithms modulo a prime reduces to fDL, and (b) computing integer factorization reduces to fIF. These are the first complete functions that have explicit reductions from significant cryptographic primitives.

  • Low Grazing Scattering from Sinusoidal Neumann Surface with Finite Extent: Total Scattering Cross Section

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:1
      Page(s):
    56-63

    This paper deals with the scattering of a transverse magnetic (TM) plane wave from a perfectly conductive sinusoidal surface with finite extent. By use of the undersampling approximation and a rectangular pulse approximation, an asymptotic formula for the total scattering cross section at a low grazing limit of incident angle is obtained explicitly under conditions such that the surface is small in roughness and slope, and the corrugation width is sufficiently large. The formula shows that the total scattering cross section is proportional to the square root of the corrugation width but does not depend on the surface period and surface roughness. When the corrugation width is not large, however, the scattered wave can be obtained by a single scattering approximation, which gives the total scattering cross section proportional to the corrugation width and the Rayleigh slope parameter. From the asymptotic formula and the single scattering solution, a transition point is defined explicitly. By comparison with numerical results, it is concluded that the asymptotic formula is fairly accurate when the corrugation width is much larger than the transition point.

  • Performance Analysis of the Extended Low Complexity User Scheduling Algorithm over Up-Link Multi-User MIMO OFDMA Systems

    Junyi WANG  Yuyuan CHANG  Chuyu ZHENG  Kiyomichi ARAKI  ZhongZhao ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    327-329

    The low complexity tree-structure based user scheduling algorithm is extended into up-link MLD-based multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing access (OFDMA) wireless systems. The system sum capacity is maximized by careful user selection on a defined tree structure. The calculation load is reduced by selecting the M most possible best branches and sampling in frequency dimension. The performances of the proposed scheduling algorithm are analyzed within three kinds of OFDMA systems and compared with conventional throughput-based algorithm. Both the theoretical analysis and simulation results show that the proposed algorithm obtains better performance with much low complexity.

  • Low Insertion-Loss, and Wideband Dual-Mode Bandpass Filters with Dual Perturbation Elements

    Shih-Bin JHONG  Min-Hang WENG  Sean WU  Cheng-Yuan HUNG  Maw-Shung LEE  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:1
      Page(s):
    117-119

    A novel low insertion-loss and wideband microstrip bandpass filter has been designed and tested. The basic configuration of this novel dual-mode filter is a square ring resonator with direct-connected orthogonal feed lines, and dual-perturbation elements are introduced within the resonator at symmetrical location. The effects of the size of the perturbation element are studied. A new filter having wider bandwidth and transmission zeros are presented. The proposed filter responses are in good agreement with the simulations and experiments.

  • Low Grazing Scattering from Sinusoidal Neumann Surface with Finite Extent: Undersampling Approximation

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E91-C No:1
      Page(s):
    9-16

    A transverse magnetic (TM) plane wave is diffracted by a periodic surface into discrete directions. However, only the reflection and no diffraction take place when the angle of incidence becomes a low grazing limit. On the other hand, the scattering occurs even at such a limit, if the periodic surface is finite in extent. To solve such contradiction, this paper deals with the scattering from a perfectly conductive sinusoidal surface with finite extent. By the undersampling approximation introduced previously, the total scattering cross section is numerically calculated against the angle of incidence for several corrugation widths up to more than 104 times of wavelength. It is then found that the total scattering cross section is linearly proportional to the corrugation width in general. But an exception takes place at a low grazing limit of incidence, where the total scattering cross section increases almost proportional to the square root of the corrugation width. This suggests that, when the corrugation width goes to infinity, the total scattering cross section diverges and the total scattering cross section per unit surface vanishes at a low grazing limit of incidence. Then, it is concluded that, at a low grazing limit of incidence, no diffraction takes place by a periodic surface with infinite extent and the scattering occurs from a periodic surface with finite extent.

  • Novel Uniform Asymptotic Solutions for the Back Scattering of a Whispering Gallery Mode by a Cylindrically Curved Conducting Sheet

    Toshihide AJIKI  Toyohiko ISHIHARA  

     
    PAPER-High-Frequency Asymptotic Methods

      Vol:
    E91-C No:1
      Page(s):
    26-33

    We have derived the novel extended UTD (Uniform Geometrical Theory of Diffraction) solution and the novel modified UTD solution for the back scattering of an incident whispering gallery (WG) mode on the edge of a cylindrically curved conducting sheet. By comparing with the reference solution obtained from the integral representation of the scattered field by integrating numerically along the integration path, we have confirmed the validity and the utility of the novel asymptotic solutions proposed in the present study. It is shown that the extended UTD solution can be connected smoothly to the modified UTD solution on the geometrical boundary separating the edge-diffracted ray and the surface-diffracted ray.

  • Research on the Road Network Extraction from Satellite Imagery

    Lili YUN  Keiichi UCHIMURA  

     
    LETTER-Intelligent Transport System

      Vol:
    E91-A No:1
      Page(s):
    433-436

    In this letter, a semi-automatic method for road network extraction from high-resolution satellite images is proposed. First, we focus on detecting the seed points in candidate road regions using a method of self-organizing map (SOM). Then, an approach to road tracking is presented, searching for connected points in the direction and candidate domain of a road. A study of Geographical Information Systems (GIS) using high-resolution satellite images is presented in this letter. Experimental results verified the effectiveness and efficiency of this approach.

  • Strong ID-Based Key Distribution

    Ik Rae JEONG  Jeong Ok KWON  Dong Hoon LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E91-B No:1
      Page(s):
    306-308

    Several ID-based key distribution schemes can be used to realize secure broadcasting systems. Unfortunately, none of the proposed schemes provide both security against long-term key reveal attacks and security against session state reveal attacks. In this letter, we suggest an ID-based key distribution scheme secure against long-term key reveal attacks and session state reveal attacks.

  • Web Structure Mining by Isolated Cliques

    Yushi UNO  Yoshinobu OTA  Akio UEMICHI  

     
    PAPER-Data Mining

      Vol:
    E90-D No:12
      Page(s):
    1998-2006

    The link structure of the Web is generally viewed as the webgraph. Web structure mining is a research area that mainly aims to find hidden communities by focusing on the webgraph, and communities or their cores are supposed to constitute dense subgraphs. Therefore, structure mining can actually be realized by enumerating such substructures, and Kleinberg's biclique model is well-known among them. In this paper, we examine some candidate substructures, including conventional bicliques, and attempt to find useful information from the real web data. Especially, we newly exploit isolated cliques for our experiments of structure mining. As a result, we discovered that isolated cliques that lie over multiple domains can stand for useful communities, which implies the validity of isolated clique as a candidate substructure for structure mining. On the other hand, we also observed that most of isolated cliques on the Web correspond to menu structures and are inherent in single domains, and that isolated cliques can be quite useful for detecting harmful link farms.

  • Design Method for Numerical Function Generators Using Recursive Segmentation and EVBDDs

    Shinobu NAGAYAMA  Tsutomu SASAO  Jon T. BUTLER  

     
    PAPER-Logic Synthesis and Verification

      Vol:
    E90-A No:12
      Page(s):
    2752-2761

    Numerical function generators (NFGs) realize arithmetic functions, such as ex,sin(πx), and , in hardware. They are used in applications where high-speed is essential, such as in digital signal or graphics applications. We introduce the edge-valued binary decision diagram (EVBDD) as a means of reducing the delay and memory requirements in NFGs. We also introduce a recursive segmentation algorithm, which divides the domain of the function to be realized into segments, where the given function is realized as a polynomial. This design reduces the size of the multiplier needed and thus reduces delay. It is also shown that an adder can be replaced by a set of 2-input AND gates, further reducing delay. We compare our results to NFGs designed with multi-terminal BDDs (MTBDDs). We show that EVBDDs yield a design that has, on the average, only 39% of the memory and 58% of the delay of NFGs designed using MTBDDs.

  • Dual Priority Scheduling Based on Power Adjustment Context Switching for Ubiquitous Sensor Network

    Dong-Sun KIM  Taeo HWANG  Seung-Yerl LEE  Kwang-Ho WON  Byung-Soo KIM  Seong-Dong KIM  Duck-Jin CHUNG  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3419-3425

    The Ubiquitous sensor network (USN) node is required to operate for several months with limited system resources such as memory and power. The typical USN node is in the active state for less than 1% of its several month lifetime and waits in the inactive state for the remaining 99% of its lifetime. This paper suggests a power adjustment dual priority scheduler (PA-DPS) that offers low power consumption while meeting the USN requirements by estimating power consumption in the USN node. PA-DPS has been designed based on the event-driven approach and the dual-priority scheduling structure, which has been conventionally suggested in the real-time system field. From experimental results, PA-DPS reduced the inactive mode current up to 40% under the 1% duty cycle.

10541-10560hit(21534hit)