The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

10961-10980hit(21534hit)

  • Enabling Large-Scale Bayesian Network Learning by Preserving Intercluster Directionality

    Sungwon JUNG  Kwang Hyung LEE  Doheon LEE  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E90-D No:7
      Page(s):
    1018-1027

    We propose a recursive clustering and order restriction (R-CORE) method for learning large-scale Bayesian networks. The proposed method considers a reduced search space for directed acyclic graph (DAG) structures in scoring-based Bayesian network learning. The candidate DAG structures are restricted by clustering variables and determining the intercluster directionality. The proposed method considers cycles on only cmax(«n) variables rather than on all n variables for DAG structures. The R-CORE method could be a useful tool in very large problems where only a very small amount of training data is available.

  • Efficient Motion Estimation for H.264 Codec by Using Effective Scan Ordering

    Jeongae PARK  Misun YOON  Hyunchul SHIN  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E90-B No:7
      Page(s):
    1839-1843

    Motion estimation (ME) is a computation intensive procedure in H.264. In ME for variable block sizes, an effective scan ordering method has been devised for early termination of absolute difference computation when the termination does not affect the performance. The new ME circuit with effective scan ordering can reduce the amount of computation by 70% compared to JM8.2 and by 30% compared to the disable approximation unit (DAU) approach.

  • Error Bound of Collision Probability Estimation in Non-saturated IEEE 802.11 WLANs

    Hyogon KIM  Jongwon YOON  Heejo LEE  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E90-B No:7
      Page(s):
    1884-1885

    We analytically prove that the error in the channel idle time-based collision probability estimation in face of non-saturated stations is bounded by 2/(CWmin+1) in the IEEE 802.11 wireless LANs (WLANs). This work explicitly quantifies the impact of non-saturation, and the result vindicates the use of the estimation technique in real-life IEEE 802.11 WLANs, in such applications as the acknowledgement-based link adaptation and the throughput optimization through contention window size adaptation.

  • A Rapid and Reliable Two-Step Search Scheme for UWB Signal Acquisition in Multipath Channels

    Jaewoon KIM  Suckchel YANG  Yoan SHIN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E90-A No:7
      Page(s):
    1491-1495

    We propose the "Two-Step Search scheme with Linear search based Second step (TSS-LS)" by improving the conventional "Two-Step Search scheme with Bit reversal search based Second step (TSS-BS)" for reliable as well as rapid acquisition of Ultra Wide Band (UWB) signals in multipath channels. The proposed TSS-LS utilizes two different thresholds and search windows to achieve fast acquisition. Furthermore, unlike the TSS-BS in which the bit reversal algorithm is applied in both steps, the linear search is adopted for the second step in the proposed TSS-LS to correctly find the starting point in the range of effective delay spread of the multipath channels, and to obtain reliable bit error rate performance of the UWB systems.

  • Complete Complementary Sequences of Different Length

    R.S. Raja DURAI  Naoki SUEHIRO  Chenggao HAN  

     
    PAPER-Coding Theory

      Vol:
    E90-A No:7
      Page(s):
    1428-1431

    The class of complete complementary sequences (of fixed length) have the ideal correlation properties and are good at increasing the channel usage efficiency but lacks in desirable sequence lengths. In spread spectrum communication systems, sequences having nice correlation properties are important in many ways such as in suppressing multi-user interference, for reliable initial synchronization and in separation of the multipath components. It would be even good if the sequences are easy to construct and have desirable lengths for the system under consideration. In this paper, M sets of sequences that constitute a complete complementary sequences with ith set containing N sequences of length Li each, i = 0, 1, ..., M - 1, is defined and a general method that constructs such a class of complete complementary sequences (of different lengths) is given. The proposed class of complete complementary sequences, constituted by sequence sets of different lengths, does not increase the data rates when short-length sequences are employed.

  • Development and Performance Analysis of Non-data Aided MMSE Receiver for DS-CDMA Systems

    Tsui-Tsai LIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1754-1763

    In this paper, a non-data aided minimum mean square error (MMSE) receiver with enhanced multiple access interference (MAI) suppression is proposed for direct-sequence code-division multiple-access (DS-CDMA) systems over a multipath fading channel. The design of the proposed receiver is via the following procedure: First, an adaptive correlator is constructed based on the linearly constrained minimum variance (LCMV) criterion to collect each multipath signal and suppress MAI blindly. A maximum ratio combiner is then utilized to coherently combine the correlator outputs. With a set of judicious chosen weight vectors, effective diversity combining can successfully suppress MAI and the desired signals can be effectively retained. Finally, further performance improvement against the finite data sample effect is achieved using a decision-aided scheme in which the channel response is obtained by the decision data and incorporated with the MMSE method to compute the refined weight vector. Performance analysis based on the output signal-to-interference-plus-noise ratio (SINR) is done to examine the efficacy of the proposed non-data aided MMSE receiver, which can offer the similar results as those of the MMSE receiver with the channel estimation correctly obtained beforehand. Computer simulation results then confirm correctness of the analysis results and demonstrate that the proposed blind receiver can successfully resist MAI as well as the finite data sample effect, and significantly outperform than the conventional blind receivers.

  • A Communication Means for Totally Locked-in ALS Patients Based on Changes in Cerebral Blood Volume Measured with Near-Infrared Light

    Masayoshi NAITO  Yohko MICHIOKA  Kuniaki OZAWA  Yoshitoshi ITO  Masashi KIGUCHI  Tsuneo KANAZAWA  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Vol:
    E90-D No:7
      Page(s):
    1028-1037

    A communication means is presented for patients with amyotrophic lateral sclerosis in totally locked-in state who are completely unable to move any part of the body and have no usual communication means. The method utilizes changes in cerebral blood volume accompanied with changes in brain activity. When a patient is asked a question and the answer to it is 'yes', the patient makes his or her brain active. The change in blood volume at the frontal lobe is detected with near-infrared light. The instantaneous amplitude and phase of the change are calculated, and the maximum amplitude and phase change are obtained. The answer 'yes' or 'no' of the patient is detected using a discriminant analysis with these two quantities as variables. The rate of correct detection is 80% on average.

  • New Variable-Bit-Rate Scheme for Waveform Interpolative Coders

    Heesik YANG  Sangbae JEONG  Minsoo HAHN  

     
    LETTER-Digital Signal Processing

      Vol:
    E90-A No:7
      Page(s):
    1469-1472

    In this paper, we propose a new variable-bit-rate speech coder based on the waveform interpolation concept. After the coder extracts all parameters, the amounts of distortions between the current and the predicted parameters, which are estimated by extrapolation using the past two parameters, are measured for all parameters. A parameter is not transmitted unless the distortion exceeds the preset threshold. At the decoder side, the non-transmitted parameter is reconstructed by extrapolation with the past two parameters used to synthesize signals. In this way, we can reduce 26% of the total bit rate while maintaining the speech quality degradation below the 0.1 perceptual evaluation of speech quality (PESQ) score.

  • Iterative Multiuser Detection/Decoding for Coded CDMA Systems in Non-Gaussian Noise

    Ivan KU  Sze Wei LEE  Teong Chee CHUAH  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E90-B No:7
      Page(s):
    1584-1593

    We propose a robust iterative multiuser receiver for decoding convolutional coded code-division multiple access (CDMA) signals in both Gaussian and non-Gaussian channel noise. The receiver is derived from a modified maximum a-posteriori (MAP) algorithm called the max-log-MAP algorithm for robustness against erroneous channel variance estimation. Furthermore, the effect of destructive outliers arising from impulsive noise is mitigated in the proposed receiver by incorporating the robust Huber penalty function into the multiuser detector. The proposed receiver is shown to perform satisfactorily over Gaussian and non-Gaussian impulsive channels. In every iteration, cumulative improvement in the quality of the a-posteriori probabilities is also demonstrated.

  • A Short Delay Relay Scheme Using Shared Frequency Repeater for UWB Impulse Radio

    Chihong CHO  Honggang ZHANG  Masao NAKAGAWA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E90-A No:7
      Page(s):
    1444-1451

    The transmit power of Ultra Wideband (UWB) is limited in short range communications to avoid the interference with existing narrow-band communication systems. Since this limits UWB communication range, this paper proposes a novel relay scheme that uses shared frequency repeaters for impulse UWB signal relay to improve system range. After considering possible problems with the repeater, in particular the coupling interference between the input and output and relay-delay, a switching control method is proposed that offers short relay-delay and suppresses the coupling interference at the repeaters. With respect to the proposed relay scheme, Pulse-Position-Modulation (PPM) UWB-based signal relay is evaluated by analyzing its BER performance using the point-to-point transmission link model.

  • Adaptive Hybrid Genetic Algorithm Parallel Interference Cancellation High Rate Multi-User Detection for Dual Rate W-CDMA Mobile Communications

    Liangfang NI  Sidan DU  Baoyu ZHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1692-1706

    Adaptive hybrid genetic algorithm concatenated with improved parallel interference cancellation, i.e. adaptive hybrid genetic algorithm parallel interference cancellation (AHGAPIC) was proposed. A study is conducted on the application of AHGAPIC to soft decoding high rate multi-user detection with diversity reception for dual-rate wideband DS-CDMA spread spectrum communications, aiming to mitigate the effect of multiple access interference. The relevant research has revealed that the local search capability of hybrid genetic algorithm (HGA) is still not good enough. Therefore, first, two evolutionary operations, i.e. inversion and insertion are merged into HGA to constitute a novel algorithm. With its moderate local search capability, this new algorithm can search for the global optimum region according to the information entropy, and then it is made adaptively vary its probabilities of crossover and mutation depending on the fitness values of the solutions to form the adaptive hybrid genetic algorithm (AHGA). Second, AHGA is utilized to effectively identify the better and better binary string to maximize the log-likelihood function of dual-rate multi-user detection. As AHGA converges to the optimum region, the control factor of the improved parallel interference cancellation (IPIC) detector is set to be the ratio of the average fitness value to the maximum fitness value of the population of AHGA. Finally, equipped with both the control factor and the binary string with the maximum fitness value as the initial data, the IPIC detector can rapidly find out the approximately optimum soft decoding vector. Then, it can obtain the approximately global optimum estimate point on the basis of the soft decoding rule, corresponding to the transmitted data bits. A lower bound of computational complexity has been achieved through simulations and qualitative analyses. The property of the proposed algorithm to converge rapidly leads to lower computational complexity. Emulation results have shown that the AHGAPIC soft decoding high rate multi-user detector is superior to other suboptimum detectors considered in this paper in terms of two points. They are the mitigation of multiple access interference and the resistance to near-far effects. Its performance is close to the sequential group optimum multi-user detector but with a shorter time delay.

  • 3D Animation Compression Using Affine Transformation Matrix and Principal Component Analysis

    Pai-Feng LEE  Chi-Kang KAO  Juin-Ling TSENG  Bin-Shyan JONG  Tsong-Wuu LIN  

     
    PAPER-Computer Graphics

      Vol:
    E90-D No:7
      Page(s):
    1073-1084

    This paper investigates the use of the affine transformation matrix when employing principal component analysis (PCA) to compress the data of 3D animation models. Satisfactory results were achieved for the common 3D models by using PCA because it can simplify several related variables to a few independent main factors, in addition to making the animation identical to the original by using linear combinations. The selection of the principal component factor (also known as the base) is still a subject for further research. Selecting a large number of bases could improve the precision of the animation and reduce distortion for a large data volume. Hence, a formula is required for base selection. This study develops an automatic PCA selection method, which includes the selection of suitable bases and a PCA separately on the three axes to select the number of suitable bases for each axis. PCA is more suitable for animation models for apparent stationary movement. If the original animation model is integrated with transformation movements such as translation, rotation, and scaling (RTS), the resulting animation model will have a greater distortion in the case of the same base vector with regard to apparent stationary movement. This paper is the first to extract the model movement characteristics using the affine transformation matrix and then to compress 3D animation using PCA. The affine transformation matrix can record the changes in the geometric transformation by using 44 matrices. The transformed model can eliminate the influences of geometric transformations with the animation model normalized to a limited space. Subsequently, by using PCA, the most suitable base vector (variance) can be selected more precisely.

  • Performance Analysis for an MC-CDMA System over Single- and Multiple-Cell Environments in Correlated-Nakagami-m Fading

    Joy Iong-Zong CHEN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1713-1724

    This paper investigates system performance for an MC-CDMA (multi-carrier coded-division multiple-access) system, in which an operating environment with both single-cell and multiple-cell configurations and correlated-Nakagami-m statistics for fading channels are adopted. It is worthwhile noting that applying the joint characteristic function to determine the jpdf (joint probability density function) with a generalized Laguerre polynomial yields a simpler method. The traditional difficult methods for explicitly obtaining the jpdf are avoided for the sake of simplification. Some new closed-form formulas for average BER (bit-error rate) with statistical calculation of MAI (multiple-access interference) for MC-CDMA system operation in multi-cell environments were obtained in this study. For achieving accuracy in the derived formulas, an example of an MC-CDMA system with a dual-receiver branch operating in a multiple-cell structure with 12 surrounding cells is presented.

  • Visible Watermarking for Halftone Images

    Jeng-Shyang PAN  Hao LUO  Zhe-Ming LU  

     
    LETTER-Information Security

      Vol:
    E90-A No:7
      Page(s):
    1487-1490

    This letter proposes a visible watermarking scheme for halftone images. It exploits HVS filtering to transform the image in binary domain into continuous-tone domain for watermark embedding. Then a codeword search operation converts the watermarked continuous-tone image into binary domain. The scheme is flexible for two weighting factors are involved to adjust the watermark embedding strength and the average intensity of the watermarked image. Moreover, it can be used in some applications where original continuous-tone images are not available and the halftoning method is unknown.

  • Proposal and Simulation of Double-Pulse Brillouin Optical Time-Domain Analysis for Measuring Distributed Strain and Temperature with cm Spatial Resolution in km-Long Fiber

    Yahei KOYAMADA  

     
    PAPER-Sensing

      Vol:
    E90-B No:7
      Page(s):
    1810-1815

    A novel type Brillouin optical time-domain analysis (BOTDA), called double-pulse BOTDA (DP-BOTDA), is proposed for measuring distributed strain and temperature in a fiber with a centimeter spatial resolution. The DP-BOTDA system transmits a double-pulsed light instead of a conventional single-pulsed light into a fiber to interact with a counter-propagating continuous-wave light through the induced acoustic wave in the fiber. The interference between acoustic waves induced by the front and rear pulses of the double-pulsed light produces broad but oscillatory Brillouin gain spectra that make it possible to measure the Brillouin frequency shift accurately despite the very narrow pulse width. Our numerical simulation, which includes an estimation of the signal-to-noise ratio of the system, shows that it is possible to measure the distributed Brillouin frequency shift with a spatial resolution of 4 cm and accuracies of 1-2 MHz for a 5-km long fiber.

  • Bit Error Rate Analysis of OFDM with Pilot-Assisted Channel Estimation

    Richol KU  Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1725-1733

    The objective of this paper is to develop the theoretical foundation to the pilot-assisted channel estimation using delay-time domain windowing for the coherent detection of OFDM signals. The pilot-assisted channel estimation using delay-time domain windowing is jointly used with polynomial interpolation, decision feedback and Wiener filter. A closed-form BER expression is derived. The impacts of the delay-time domain window width, multipath channel decay factor, the maximum Doppler frequency are discussed. The theoretical analysis is confirmed by computer simulation.

  • Optimum Practical Design of Distributed and Asynchronous Power Control for Wireless Networks with Shared Bands

    Stepan KUCERA  Koji YAMAMOTO  Susumu YOSHIDA  

     
    PAPER

      Vol:
    E90-A No:7
      Page(s):
    1261-1270

    The present paper proposes two novel and practical schemes for distributed and asynchronous power control in wireless ad hoc networks, in which users dynamically share several frequency bands as in "cognitive radio" networks. These schemes iteratively adjust transmit powers of individual network transmitters with respect to mutually caused interference in the shared bands. Their most attractive feature is that they find network-wide acceptable trade-offs to diverse signal-to-noise and interference (SINR) requirements and efficiently use techniques of stochastic approximation and time-averaging to guarantee a robust performance in random channels. Advantageously, both proposed algorithms do not assume any particular modulation, coding, QoS measure definition or network architecture, which assures their high applicability in the industry and research. Moreover, the broad definition and non-linear nature of these schemes mathematically generalize and thus encompass as a special case many widely deployed power control schemes such as e.g. those for achieving fixed SINR targets or using game-theoretic utility maximization. Simulations are provided to illustrate our approach and its better performance compared to standard algorithms.

  • Particle Swarm Optimization Assisted Multiuser Detection along with Radial Basis Function

    Muhammad ZUBAIR  Muhammad Aamir Saleem CHOUDHRY  Aqdas Naveed MALIK  Ijaz Mansoor QURESHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1861-1863

    In this work particle swarm optimization (PSO) aided with radial basis functions (RBF) has been suggested to carry out multiuser detection (MUD) for synchronous direct sequence code division multiple access (DS-CDMA) systems. The performance of the proposed algorithm is compared to that of other standard suboptimal detectors and genetic algorithm (GA) assisted MUD. It is shown to offer better performance than the others especially if there are many users.

  • Linear Dispersion Codes with Limited Feedback

    Dan DENG  Jin-kang ZHU  Ling QIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1876-1879

    LDCs system with finite-rate error-free feedback is proposed in this letter. The optimal transmission codeword is selected at the receiver and the codeword index is sent to the transmitter. A simple random search algorithm is introduced for codebook generation. Moreover, the max-min singular value criterion is adopted for codeword selection. Simulation results showed that, with only 3-4 feedback bits, the low-complexity Zero-Forcing receiver can approach the Maximum-Likelihood (ML) performance.

  • Theoretical Analysis of Decision Directed Block Iterative Channel Estimation for OFDM Mobile Radio

    Koichi ADACHI  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1764-1772

    Orthogonal frequency division multiplexing (OFDM) is one of the promising transmission techniques for next generation mobile communication systems. Accurate channel estimation is essential for coherent OFDM signal transmission. So far, many pilot-assisted channel estimation schemes have been proposed. In the case of packet transmission, each received packet can be repeatedly processed by decision feedback to improve the channel estimation accuracy, resulting in a decision directed block iterative channel estimation (DD-BICE). However, decision feedback of erroneously detected data symbols degrades the packet error rate (PER) or bit error rate (BER) performance. In this paper, theoretical analysis is presented for the DD-BICE taking into account the decision feedback errors assuming quadrature phase shift keying (QPSK) data modulation. A 2-dimensional (2D) averaging filter is used for reducing the negative impact of decision feedback errors. The impacts of 2D averaging filter and antenna diversity reception are discussed and the validity of the theoretical analysis is confirmed by computer simulation.

10961-10980hit(21534hit)