The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

1301-1320hit(21534hit)

  • Approximate Simultaneous Diagonalization of Matrices via Structured Low-Rank Approximation

    Riku AKEMA  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2020/10/15
      Vol:
    E104-A No:4
      Page(s):
    680-690

    Approximate Simultaneous Diagonalization (ASD) is a problem to find a common similarity transformation which approximately diagonalizes a given square-matrix tuple. Many data science problems have been reduced into ASD through ingenious modelling. For ASD, the so-called Jacobi-like methods have been extensively used. However, the methods have no guarantee to suppress the magnitude of off-diagonal entries of the transformed tuple even if the given tuple has an exact common diagonalizer, i.e., the given tuple is simultaneously diagonalizable. In this paper, to establish an alternative powerful strategy for ASD, we present a novel two-step strategy, called Approximate-Then-Diagonalize-Simultaneously (ATDS) algorithm. The ATDS algorithm decomposes ASD into (Step 1) finding a simultaneously diagonalizable tuple near the given one; and (Step 2) finding a common similarity transformation which diagonalizes exactly the tuple obtained in Step 1. The proposed approach to Step 1 is realized by solving a Structured Low-Rank Approximation (SLRA) with Cadzow's algorithm. In Step 2, by exploiting the idea in the constructive proof regarding the conditions for the exact simultaneous diagonalizability, we obtain an exact common diagonalizer of the obtained tuple in Step 1 as a solution for the original ASD. Unlike the Jacobi-like methods, the ATDS algorithm has a guarantee to find an exact common diagonalizer if the given tuple happens to be simultaneously diagonalizable. Numerical experiments show that the ATDS algorithm achieves better performance than the Jacobi-like methods.

  • Using SubSieve Technique to Accelerate TupleSieve Algorithm

    Zedong SUN  Chunxiang GU  Yonghui ZHENG  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2020/10/22
      Vol:
    E104-A No:4
      Page(s):
    714-722

    Sieve algorithms are regarded as the best algorithms to solve the shortest vector problem (SVP) on account of its good asymptotical quality, which could make it outperform enumeration algorithms in solving SVP of high dimension. However, due to its large memory requirement, sieve algorithms are not practical as expected, especially on high dimension lattice. To overcome this bottleneck, TupleSieve algorithm was proposed to reduce memory consumption by a trade-off between time and memory. In this work, aiming to make TupleSieve algorithm more practical, we combine TupleSieve algorithm with SubSieve technique and obtain a sub-exponential gain in running time. For 2-tuple sieve, 3-tuple sieve and arbitrary k-tuple sieve, when selecting projection index d appropriately, the time complexity of our algorithm is O(20.415(n-d)), O(20.566(n-d)) and $O(2^{ rac{kmathrm{log}_2p}{1-k}(n-d)})$ respectively. In practice, we propose a practical variant of our algorithm based on GaussSieve algorithm. Experimental results show that our algorithm implementation is about two order of magnitude faster than FPLLL's GuassSieve algorithm. Moreover, techniques such as XOR-POPCNT trick, progressive sieving and appropriate projection index selection can be exploited to obtain a further acceleration.

  • Deep Network for Parametric Bilinear Generalized Approximate Message Passing and Its Application in Compressive Sensing under Matrix Uncertainty

    Jingjing SI  Wenwen SUN  Chuang LI  Yinbo CHENG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/09/29
      Vol:
    E104-A No:4
      Page(s):
    751-756

    Deep learning is playing an increasingly important role in signal processing field due to its excellent performance on many inference problems. Parametric bilinear generalized approximate message passing (P-BiG-AMP) is a new approximate message passing based approach to a general class of structure-matrix bilinear estimation problems. In this letter, we propose a novel feed-forward neural network architecture to realize P-BiG-AMP methodology with deep learning for the inference problem of compressive sensing under matrix uncertainty. Linear transforms utilized in the recovery process and parameters involved in the input and output channels of measurement are jointly learned from training data. Simulation results show that the trained P-BiG-AMP network can achieve higher reconstruction performance than the P-BiG-AMP algorithm with parameters tuned via the expectation-maximization method.

  • Design and VLSI Implementation of a Sorted MMSE QR Decomposition for 4×4 MIMO Detectors

    Lu SUN  Bin WU  Tianchun YE  

     
    LETTER-VLSI Design Technology and CAD

      Pubricized:
    2020/10/12
      Vol:
    E104-A No:4
      Page(s):
    762-767

    In this letter, a low latency, high throughput and hardware efficient sorted MMSE QR decomposition (MMSE-SQRD) for multiple-input multiple-output (MIMO) systems is presented. In contrast to the method of extending the complex matrix to real model and thereafter applying real-valued QR decomposition (QRD), we develop a highly parallel decomposition scheme based on coordinate rotation digital computer (CORDIC) which performs the QRD in complex domain directly and then converting the complex result to its real counterpart. The proposed scheme can greatly improve the processing parallelism and curtail the nullification and sorting procedures. Besides, we also design the corresponding pipelined hardware architecture of the MMSE-SQRD based on highly parallel Givens rotation structure with CORDIC algorithm for 4×4 MIMO detectors. The proposed MMSE-SQRD is implemented in SMIC 55nm CMOS technology achieving up to 50M QRD/s throughput and a latency of 59 clock cycles with only 218 kilo-gates (KG). Compared to the previous works, the proposed design achieves the highest normalized throughput efficiency and lowest processing latency.

  • Hand-Held System to Find Victims with Smartphones in Disaster Environment Open Access

    Yasuyuki MARUYAMA  Toshiaki MIYAZAKI  

     
    PAPER-Sensing

      Pubricized:
    2020/10/19
      Vol:
    E104-B No:4
      Page(s):
    455-462

    After a natural disaster it is critical to urgently find victims buried under collapsed buildings. Most people habitually carry smartphones with them. Smartphones have a feature that periodically transmits Wi-Fi signals called “Probe Requests” to connect with access points. Moreover, smartphones transmit “Clear to Send” when they receive a “Request to Send” alert. This motivated us to develop a hand-held smartphone finder system that integrates a novel method for accurately locating a smartphone using the Wi-Fi signals, to support rescue workers. The system has a unique graphical user interface that tracks target smartphones. Thus, rescue workers can easily reach victims who have their smartphones with them under collapsed buildings. In this paper, after introducing the localization method, the system architecture of the smartphone finder and its prototype system are described, along with some experimental results that demonstrate the effectiveness of the smartphone finder prototype.

  • Electromagnetic Scattering Analysis from a Rectangular Hole in a Thick Conducting Screen

    Khanh Nam NGUYEN  Hiroshi SHIRAI  Hirohide SERIZAWA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2020/08/20
      Vol:
    E104-C No:4
      Page(s):
    134-143

    Electromagnetic scattering of an electromagnetic plane wave from a rectangular hole in a thick conducting screen is solved using the Kirchhoff approximation (KA). The scattering fields can be derived as field radiations from equivalent magnetic current sources on the aperture of the hole. Some numerical results are compared with those by the Kobayashi potential (KP) method. The proposed method can be found to be efficient to solve the diffraction problem for high frequency regime.

  • Noise-Robust Distorted Born Iterative Method with Prior Estimate for Microwave Ablation Monitoring Open Access

    Yuriko TAKAISHI  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2020/10/06
      Vol:
    E104-C No:4
      Page(s):
    148-152

    A noise-robust and accuracy-enhanced microwave imaging algorithm is presented for microwave ablation monitoring of cancer treatment. The ablation impact of dielectric change can be assessed by microwave inverse scattering analysis, where the dimension and dielectric drop of the ablation zone enable safe ablation monitoring. We focus on the distorted Born iterative method (DBIM), which is applicable to highly heterogeneous and contrasted dielectric profiles. As the reconstruction accuracy and convergence speed of DBIM depend largely on the initial estimate of the dielectric profile or noise level, this study exploits a prior estimate of the DBIM for the pre-ablation state to accelerate the convergence speed and introduces the matched-filter-based noise reduction scheme in the DBIM framework. The two-dimensional finite-difference time-domain numerical test with realistic breast phantoms shows that our method significantly enhances the reconstruction accuracy with a lower computational cost.

  • Real-Time Experiment and Numerical Analysis of Highly-Survivable Adaptive Restoration for High-Capacity Optical Signal Transmission Open Access

    Hiroki KAWAHARA  Kohei SAITO  Masahiro NAKAGAWA  Takashi KUBO  Takeshi SEKI  Takeshi KAWASAKI  Hideki MAEDA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2020/09/28
      Vol:
    E104-B No:4
      Page(s):
    360-369

    An optical-layer adaptive restoration scheme is validated by a real-time experiment and numerical analyses. In this paper, it is assumed that this scheme can adaptively optimize the bitrate (up to 600Gb/s) and an optical reach with 100Gb/s granularity to maintain high-capacity optical signal transmission. The practicality of 600-Gb/s/carrier optical signal transmission over 101.6-km field-installed fiber is confirmed prior to the adaptive restoration experiment. After modifying the field setup, a real-time experiment on network recovery is demonstrated with bitrate adaptation for 600-Gb/s to 400-Gb/s signals. The results indicate that this scheme can restore failed connections with recovery times comparable to those of conventional restoration scheme; thus 99.9999% system availability can be easily attained even under double-link failures. Numerical analysis clarifies that adaptive restoration can recover >80% of double-link failures on several realistic topologies and improvement amount against conventional scheme is semi-statistically characterized by restoration path length.

  • Comprehensive Feasibility Study on Direct Spectrum Division Transmission over Multiple Satellite Transponders

    Fumihiro YAMASHITA  Daisuke GOTO  Yasuyoshi KOJIMA  Jun-ichi ABE  Takeshi ONIZAWA  

     
    PAPER-Satellite Communications

      Pubricized:
    2020/10/22
      Vol:
    E104-B No:4
      Page(s):
    446-454

    We have developed a direct spectrum division transmission (DSDT) technique that can divide a single-carrier signal into multiple sub-spectra and assign them to dispersed frequency resources of the satellite transponder to improve the spectrum efficiency of the whole system. This paper summarizes the satellite experiments on DSDT over a single and/or multiple satellite transponders, while changing various parameters such as modulation schemes, roll-off ratios, and symbol rates. In addition, by considering practical use conditions, we present an evaluation of the performance when the spectral density of each sub-spectrum differed across transponders. The satellite experiments demonstrate that applying the proposal does not degrade the bit error rate (BER) performance. Thus, the DSDT technique is a practical approach to use the scattered unused frequency resources over not only a single transponder but also multiple ones.

  • Malicious URLs Detection Based on a Novel Optimization Algorithm

    Wang BO  Zhang B. FANG  Liu X. WEI  Zou F. CHENG  Zhang X. HUA  

     
    LETTER-Information Network

      Pubricized:
    2021/01/14
      Vol:
    E104-D No:4
      Page(s):
    513-516

    In this paper, the issue of malicious URL detection is investigated. Firstly a P system is proposed. Then the new P system is introduced to design the optimization algorithm of BP neural network to achieve the malicious URL detection with better performance. In the end some examples are included and corresponding experimental results display the advantage and effectiveness of the optimization algorithm proposed.

  • Transmission Control Method for Data Retention Taking into Account the Low Vehicle Density Environments

    Ichiro GOTO  Daiki NOBAYASHI  Kazuya TSUKAMOTO  Takeshi IKENAGA  Myung LEE  

     
    LETTER-Information Network

      Pubricized:
    2021/01/05
      Vol:
    E104-D No:4
      Page(s):
    508-512

    With the development and spread of Internet of Things (IoT) technology, various kinds of data are now being generated from IoT devices. Some data generated from IoT devices depend on geographical location and time, and we refer to them as spatio-temporal data (STD). Since the “locally produced and consumed” paradigm of STD use is effective for location-dependent applications, the authors have previously proposed a vehicle-based STD retention system. However, in low vehicle density environments, the data retention becomes difficult due to the decrease in the number of data transmissions in this method. In this paper, we propose a new data transmission control method for data retention in the low vehicle density environments.

  • Analysis of BER Degradation Owing to Multiple Crosstalk Channels in Optical QPSK/QAM Signals

    Kyo INOUE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2020/09/28
      Vol:
    E104-B No:4
      Page(s):
    370-377

    Inter-channel crosstalk is one of the limiting factors in multichannel optical systems. This paper presents a theoretical analysis of the bit-error-rate (BER) performance of quadrature phase shift keying (QPSK) and quadrature amplitude modulation (QAM) signals influenced by multiple crosstalk channels. The field distribution of multiple crosstalk channels in the constellation map is calculated. The BER of the QPSK/QAM signal, onto which the crosstalk light is superimposed, is then evaluated for a varying number of crosstalk channels under the condition that the total crosstalk power is constant. The results quantitatively confirm that as the channel number increases, the BER degradation caused by crosstalk light approaches that caused by Gaussian noise light. It is also confirmed that the degradations caused by crosstalk light and Gaussian light are similar for QAM signals of high-level modulation.

  • Backbone Alignment and Cascade Tiny Object Detecting Techniques for Dolphin Detection and Classification

    Yih-Cherng LEE  Hung-Wei HSU  Jian-Jiun DING  Wen HOU  Lien-Shiang CHOU  Ronald Y. CHANG  

     
    PAPER-Image

      Pubricized:
    2020/09/29
      Vol:
    E104-A No:4
      Page(s):
    734-743

    Automatic tracking and classification are essential for studying the behaviors of wild animals. Owing to dynamic far-shooting photos, the occlusion problem, protective coloration, the background noise is irregular interference for designing a computerized algorithm for reducing human labeling resources. Moreover, wild dolphin images are hard-acquired by on-the-spot investigations, which takes a lot of waiting time and hardly sets the fixed camera to automatic monitoring dolphins on the ocean in several days. It is challenging tasks to detect well and classify a dolphin from polluted photos by a single famous deep learning method in a small dataset. Therefore, in this study, we propose a generic Cascade Small Object Detection (CSOD) algorithm for dolphin detection to handle small object problems and develop visualization to backbone based classification (V2BC) for removing noise, highlighting features of dolphin and classifying the name of dolphin. The architecture of CSOD consists of the P-net and the F-net. The P-net uses the crude Yolov3 detector to be a core network to predict all the regions of interest (ROIs) at lower resolution images. Then, the F-net, which is more robust, is applied to capture the ROIs from high-resolution photos to solve single detector problems. Moreover, a visualization to backbone based classification (V2BC) method focuses on extracting significant regions of occluded dolphin and design significant post-processing by referencing the backbone of dolphins to facilitate for classification. Compared to the state of the art methods, including faster-rcnn, yolov3 detection and Alexnet, the Vgg, and the Resnet classification. All experiments show that the proposed algorithm based on CSOD and V2BC has an excellent performance in dolphin detection and classification. Consequently, compared to the related works of classification, the accuracy of the proposed designation is over 14% higher. Moreover, our proposed CSOD detection system has 42% higher performance than that of the original Yolov3 architecture.

  • Multiclass Dictionary-Based Statistical Iterative Reconstruction for Low-Dose CT

    Hiryu KAMOSHITA  Daichi KITAHARA  Ken'ichi FUJIMOTO  Laurent CONDAT  Akira HIRABAYASHI  

     
    PAPER-Numerical Analysis and Optimization

      Pubricized:
    2020/10/06
      Vol:
    E104-A No:4
      Page(s):
    702-713

    This paper proposes a high-quality computed tomography (CT) image reconstruction method from low-dose X-ray projection data. A state-of-the-art method, proposed by Xu et al., exploits dictionary learning for image patches. This method generates an overcomplete dictionary from patches of standard-dose CT images and reconstructs low-dose CT images by minimizing the sum of a data fidelity and a regularization term based on sparse representations with the dictionary. However, this method does not take characteristics of each patch, such as textures or edges, into account. In this paper, we propose to classify all patches into several classes and utilize an individual dictionary with an individual regularization parameter for each class. Furthermore, for fast computation, we introduce the orthogonality to column vectors of each dictionary. Since similar patches are collected in the same cluster, accuracy degradation by the orthogonality hardly occurs. Our simulations show that the proposed method outperforms the state-of-the-art in terms of both accuracy and speed.

  • Pilot Decontamination in Spatially Correlated Massive MIMO Uplink via Expectation Propagation

    Wataru TATSUNO  Keigo TAKEUCHI  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2020/10/09
      Vol:
    E104-A No:4
      Page(s):
    723-733

    This paper addresses pilot contamination in massive multiple-input multiple-output (MIMO) uplink. Pilot contamination is caused by reuse of identical pilot sequences in adjacent cells. To solve pilot contamination, the base station utilizes differences between the transmission frames of different users, which are detected via joint channel and data estimation. The joint estimation is regarded as a bilinear inference problem in compressed sensing. Expectation propagation (EP) is used to propose an iterative channel and data estimation algorithm. Initial channel estimates are attained via time-shifted pilots without exploiting information about large scale fading. The proposed EP modifies two points in conventional bilinear adaptive vector approximate message-passing (BAd-VAMP). One is that EP utilizes data estimates after soft decision in the channel estimation while BAd-VAMP uses them before soft decision. The other point is that EP can utilize the prior distribution of the channel matrix while BAd-VAMP cannot in principle. Numerical simulations show that EP converges much faster than BAd-VAMP in spatially correlated MIMO, in which approximate message-passing fails to converge toward the same fixed-point as EP and BAd-VAMP.

  • A Hardware Implementation on Customizable Embedded DSP Core for Colorectal Tumor Classification with Endoscopic Video toward Real-Time Computer-Aided Diagnosais System

    Masayuki ODAGAWA  Takumi OKAMOTO  Tetsushi KOIDE  Toru TAMAKI  Bisser RAYTCHEV  Kazufumi KANEDA  Shigeto YOSHIDA  Hiroshi MIENO  Shinji TANAKA  Takayuki SUGAWARA  Hiroshi TOISHI  Masayuki TSUJI  Nobuo TAMBA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2020/10/06
      Vol:
    E104-A No:4
      Page(s):
    691-701

    In this paper, we present a hardware implementation of a colorectal cancer diagnosis support system using a colorectal endoscopic video image on customizable embedded DSP. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimination result by a computer. Therefore, in order to identify lesions with high robustness and stable classification to these images specific to video frame, we implement a computer-aided diagnosis (CAD) system for colorectal endoscopic images with Narrow Band Imaging (NBI) magnification with the Convolutional Neural Network (CNN) feature and Support Vector Machine (SVM) classification. Since CNN and SVM need to perform many multiplication and accumulation (MAC) operations, we implement the proposed hardware system on a customizable embedded DSP, which can realize at high speed MAC operations and parallel processing with Very Long Instruction Word (VLIW). Before implementing to the customizable embedded DSP, we profile and analyze processing cycles of the CAD system and optimize the bottlenecks. We show the effectiveness of the real-time diagnosis support system on the embedded system for endoscopic video images. The prototyped system demonstrated real-time processing on video frame rate (over 30fps @ 200MHz) and more than 90% accuracy.

  • RPCA-Based Radio Interference Cancellation Algorithm for Compact HF Surface Wave Radar

    Di YAO  Aijun LIU  Hongzhi LI  Changjun YU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/10/15
      Vol:
    E104-A No:4
      Page(s):
    757-761

    In the user-congested high-frequency band, radio frequency interference (RFI) is a dominant factor that degrades the detection performance of high-frequency surface wave radar (HFSWR). Up to now, various RFI suppression algorithms have been proposed while they are usually inapplicable to the compact HFSWR because of the minimal array aperture. Therefore, this letter proposes a novel RFI mitigation scheme for compact HFSWR, even for single antenna. The scheme utilized the robust principal component analysis to separate RFI and target, based on the time-frequency distribution characteristics of the RFI. The effectiveness of this scheme is demonstrated by the measured data, which can effectively suppress RFI without losing target signal.

  • Forcible Search Scheme for Mixed Gibbs Sampling Massive MIMO Detection

    Kenji YAMAZAKI  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/10/06
      Vol:
    E104-B No:4
      Page(s):
    419-427

    In this paper, mixed Gibbs sampling multiple-input multiple-output (MIMO) detection with forcible search is proposed. In conventional Gibbs sampling MIMO detection, the problem of stalling occurs under high signal-to-noise ratios (SNRs) which degrades the detection performance. Mixed Gibbs sampling (MGS) is one solution to this problem. In MGS, random sampling is carried out with a constant probability regardless of whether a current search falls into a local minimum. In the proposed scheme, combined with MGS, multiple candidate symbols are forcibly changed when the search is captured by a local minimum. The search restarts away from the local minimum which effectively enlarges the search area in the solution space. Numerical results obtained through computer simulation show that the proposed scheme achieves better performance in a large scale MIMO system with QPSK signals.

  • Robust Blind Watermarking Algorithm Based on Contourlet Transform with Singular Value Decomposition

    Lei SONG  Xue-Cheng SUN  Zhe-Ming LU  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2020/09/11
      Vol:
    E104-A No:3
      Page(s):
    640-643

    In this Letter, we propose a blind and robust multiple watermarking scheme using Contourlet transform and singular value decomposition (SVD). The host image is first decomposed by Contourlet transform. Singular values of Contourlet coefficient blocks are adopted to embed watermark information, and a fast calculation method is proposed to avoid the heavy computation of SVD. The watermark is embedded in both low and high frequency Contourlet coefficients to increase the robustness against various attacks. Moreover, the proposed scheme intrinsically exploits the characteristics of human visual system and thus can ensure the invisibility of the watermark. Simulation results show that the proposed scheme outperforms other related methods in terms of both robustness and execution time.

  • Game-Theory Modeling of Multicolor LED-Based VLC Systems under Smart Interference

    Yu Min HWANG  Isaac SIM  Young Ghyu SUN  Ju Phil CHO  Jin Young KIM  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/09/09
      Vol:
    E104-A No:3
      Page(s):
    656-660

    In this letter, we study an interference scenario under a smart interferer which observes color channels and interferes with a visible light communication (VLC) network. We formulate the smart interference problem based on a Stackelberg game and propose an optimal response algorithm to overcome the interference by optimizing transmit power and sub-color channel allocation. The proposed optimization algorithm is composed with Lagrangian dual decomposition and non-linear fractional programming to have stability to get optimum points. Numerical results show that the utility by the proposed algorithm is increased over that of the algorithm based on the Nash game and the baseline schemes.

1301-1320hit(21534hit)