The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

1221-1240hit(21534hit)

  • Derivation Procedure of Coefficients of Metadata-Based Model for Adaptive Bitrate Streaming Services Open Access

    Kazuhisa YAMAGISHI  Noritsugu EGI  Noriko YOSHIMURA  Pierre LEBRETON  

     
    PAPER

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    725-737

    Since the quality of video streaming services is degraded due to the encoding, network congestion, and lack of a playout buffer, the normality of services needs to be monitored by gathering the quality measured at the end clients. When measuring quality at the end clients, the computational power should be sufficiently low, the bitstream information cannot be accessed for the quality estimation due to the encryption, and reference video cannot be used at the end clients. Therefore, metadata-based models have been developed and standardized that take metadata such as the resolution, framerate, and bitrate, and stalling information as input and calculate the quality. However, calculated quality for linear TV and video on demand (VoD) services cannot be compared because metadata-based models cannot calculate the impacts of codec strategies (e.g., H.264/AVC, H.265/HEVC, and AV1) and configurations (e.g., 1-pass encoding for linear TV or 2-pass encoding for VoD) on the quality. To take into account the impact of codec strategies and configurations, coefficients of metadata-based model need to be optimized per codec strategy and configuration using subjective quality. However, extensive subjective assessment tests are difficult to frequently conduct because they are expensive and time consuming and need to be conducted by video quality experts. Therefore, to monitor the quality of several types of video streaming services (e.g., linear TV and VoD) and to compare these qualities, a derivation procedure is proposed for obtaining coefficients of metadata-based models using a full-reference model. To validate the procedure, extensive subjective assessment tests were conducted. Finally, it is shown that three metadata-based models (i.e., the P.1203.1 mode 0 model, extended P.1203.1 mode 0 model, and model proposed by Yamagishi et al.) based on the proposed procedure using the video multimethod assessment fusion (VMAF) algorithm estimate quality accurately in terms of root mean squared error.

  • 4K 120fps HEVC Encoder with Multi-Chip Configuration Open Access

    Yuya OMORI  Ken NAKAMURA  Takayuki ONISHI  Daisuke KOBAYASHI  Tatsuya OSAWA  Hiroe IWASAKI  

     
    PAPER

      Pubricized:
    2021/02/04
      Vol:
    E104-B No:7
      Page(s):
    749-759

    This paper describes a novel 4K 120fps (frames per second) real-time HEVC (High Efficiency Video Coding) encoder for high-frame-rate video encoding and transmission. Motion portrayal problems such as motion blur and jerkiness may occur in video scenes containing fast-moving objects or quick camera panning. A high-frame-rate solves such problems and provides a more immersive viewing experience that can express even the fast-moving scenes without discomfort. It can also be used in remote operation for scenes with high motion, such as VAR (Video Assistant Referee) systems in sports. Real-time encoding of high-frame-rate videos with low latency and temporal scalability is required for providing such high-frame-rate video services. The proposed encoder achieves full 4K/120fps real-time encoding, which is twice the current 4K service frame rate of 60fps, by multichip configuration with two encoder LSI. Exchange of reference picture data near a spatially divided slice boundary provides cross-chip motion estimation, and maintains the coding efficiency. The encoder supports temporal-scalable coding mode, in which it output stream with temporal scalability transmitted over one or two transmission paths. The encoder also supports the other mode, low-delay coding mode, in which it achieves 21.8msec low-latency processing through motion vector restriction. Evaluation of the proposed encoder's multichip configuration shows that the BD-bitrate (the average rate of bitrate increase), compared to simple slice division without inter-chip transfer, is -2.86% at minimum and -2.41% on average in temporal-scalable coding mode. The proposed encoder system will open the door to the next generation of high-frame-rate UHDTV (ultra-high-definition television) services.

  • An Intent-Based System Configuration Design for IT/NW Services with Functional and Quantitative Constraints Open Access

    Takuya KUWAHARA  Takayuki KURODA  Takao OSAKI  Kozo SATODA  

     
    PAPER

      Pubricized:
    2021/02/04
      Vol:
    E104-B No:7
      Page(s):
    791-804

    Network service providers need to appropriately design systems and carefully configuring the settings and parameters to ensure that the systems keep running consistently and deliver the desired services. This can be a heavy and error-prone task. Intent-based system design methods have been developed to help with such tasks. These methods receive service-level requirements and generate service configurations to fulfill the given requirements. One such method is search-based system design, which can flexibly generate systems of various architectures. However, it has difficulty dealing with constraints on the quantitative parameters of systems, e.g., disk volume, RAM size, and QoS. To deal with practical cases, intent-based system design engines need to be able to handle quantitative parameters and constraints. In this work, we propose a new intent-based system design method based on search-based design that augments search states with quantitative constraints. Our method can generate a system that meets both functional and quantitative service requirements by combining a search-based design method with constraint checking. Experimental results show that our method can automatically generate a system that fulfills all given requirements within a reasonable computation time.

  • Efficient Data Diffusion and Elimination Control Method for Spatio-Temporal Data Retention System Open Access

    Shumpei YAMASAKI  Daiki NOBAYASHI  Kazuya TSUKAMOTO  Takeshi IKENAGA  Myung J. LEE  

     
    PAPER

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    805-816

    With the development and spread of Internet of Things technologies, various types of data for IoT applications can be generated anywhere and at any time. Among such data, there are data that depend heavily on generation time and location. We define these data as spatio-temporal data (STD). In previous studies, we proposed a STD retention system using vehicular networks to achieve the “Local production and consumption of STD” paradigm. The system can quickly provide STD for users within a specific location by retaining the STD within the area. However, this system does not take into account that each type of STD has different requirements for STD retention. In particular, the lifetime of STD and the diffusion time to the entire area directly influence the performance of STD retention. Therefore, we propose an efficient diffusion and elimination control method for retention based on the requirements of STD. The results of simulation evaluation demonstrated that the proposed method can satisfy the requirements of STD, while maintaining a high coverage rate in the area.

  • Effect of Failures on Stock Price of Telecommunication Service Providers

    Masahiro HAYASHI  

     
    PAPER

      Pubricized:
    2021/01/18
      Vol:
    E104-B No:7
      Page(s):
    829-836

    This paper reports the results of a new test on what types of failure cause falls in the stock prices of telecommunication service providers. This analysis of stock price is complementary to our previous one on market share. A clear result of our new test is that the type of failure causing falls in stock price is different from the type causing decline in market share. Specifically, the previous study identified frequent failures as causes of decline in market share, while the current study indicates large failures affecting many users as causes of falls in stock price. Together, these analyses give important information for reliability designs of telecommunications networks.

  • Radiation Properties of Wideband Multi-Ring Microstrip Antennas Fed by an L-Probe for Single- and Dual-Band Operations

    Yuki KIMURA  Sakuyoshi SAITO  Yuichi KIMURA  Tatsuya FUKUNAGA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    858-864

    This paper presents the design and measurement of wideband multi-ring microstrip antennas fed by an L-probe for single- and dual-band operation. The proposed antennas consist of one or two square ring patches and an L-probe arranged in a multi-layered dielectric substrate. By using a thick substrate for the L-probe and optimizing the distances between the L-probe and the patches, wideband performance is successfully achieved. The optimal substrate thickness of the L-probe and patches to obtain good wideband performance were determined, and prototype antennas for single- and dual-band operation were fabricated and tested. The measured fractional bandwidths corresponding to reflection coefficients below -10dB were 46.1% for the single-band antenna and 20.3% and 15.7% for the dual-band antenna. The measured gains of the test antennas in the above bandwidths were 0-6.9dBi for the single-band antenna and 3.0-8.6dBi for the dual-band antenna. Although the E-plane radiation patterns were slightly tilted against the frequency, stable broadside radiation was confirmed. The proposed antennas exhibited excellent performance as wideband planar antennas for single- and dual-band operation. The proposed wideband antennas can be easily extended to a dual linearly polarized antenna by using another L-probe in the orthogonal position.

  • Simple Weight Calculation Methods for Millimeter Wave Band Massive Antenna Array in Direct Wave Dominant Environment

    Mizuki SUGA  Yushi SHIRATO  Naoki KITA  Takeshi ONIZAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/01/14
      Vol:
    E104-B No:7
      Page(s):
    865-872

    We propose two simple weight calculation methods (primary method and enhanced method), that estimate approximated phase plane from a few antenna phase and calculate weights of all antenna elements, for wireless backhaul systems that utilize millimeter wave band massive antenna arrays. Such systems are expected to be used instead of optical fiber for connecting many small cell base stations (SCBSs) to the core network, and supporting the rapid deployment of SCBSs. However, beamforming with massive antenna arrays requires many analog-digital converters (ADCs) and incurs the issue of implementation complexity. The proposed methods overcome the problem by reducing the number of ADCs. Computer simulations clarify the appropriate layout and the number of ADCs connected to antenna elements; the effectiveness of the proposed methods is confirmed by evaluations with measured channel state information (CSI) in propagation experiments on a wireless backhaul system. Experimental verifications on the case of calculating the weight of 200 elements from the phases of just 9 elements show that the array gain degradation from ideal (the case in which the phases of all elements are used estimation) with both methods is less than 0.4 dB in the direct wave dominant environment. In addition, the enhanced method holds the array gain degradation to under 0.8dB in an environment existing reflected waves. These results show that the proposed methods can attain high accuracy beamforming while reducing ADC number.

  • Achieving Hidden-Terminal-Free Channel Assignment in IEEE802.11-Based Multi-Radio Multi-Channel Wireless Mesh Networks Open Access

    Yi TIAN  Takahiro NOI  Takuya YOSHIHIRO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/23
      Vol:
    E104-B No:7
      Page(s):
    873-883

    Wireless Mesh Networks (WMNs) are often designed on IEEE 802.11 standards and are being widely studied due to their adaptability in practical network scenarios, where the overall performance has been improved by the use of the Multi-Radio and Multi-Channel (MRMC) configuration. However, because of the limitation on the number of available orthogonal channels and radios on each router, the network still suffers from low throughput due to packet collisions. Many studies have demonstrated that the optimized channel assignment to radio interfaces so as to avoid interference among wireless links is an effective solution. However, no existing channel assignment scheme can achieve hidden-terminal-free transmission and thus avoid communication performance degradation given the limited number of orthogonal channels. In this paper, we propose a new static channel assignment scheme CASCA (CSMA-aware Static Channel Assignment) based on a Partial MAX-SAT formulation of the channel assignment problem that incorporates a CSMA-aware interference model. The evaluation results show that CASCA achieves hidden-terminal-freedom in both grid and random topology networks with 3-4 orthogonal channels with preservation of network connectivity. In addition, the network simulation results show that CASCA presents good communication performance with low MAC-layer collision rate.

  • Distributed Detection of MIMO Spatial Multiplexed Signals in Terminal Collaborated Reception

    Fengning DU  Hidekazu MURATA  Mampei KASAI  Toshiro NAKAHIRA  Koichi ISHIHARA  Motoharu SASAKI  Takatsune MORIYAMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/29
      Vol:
    E104-B No:7
      Page(s):
    884-892

    Distributed detection techniques of multiple-input multiple-output (MIMO) spatially multiplexed signals are studied in this paper. This system considered employs multiple mobile stations (MSs) to receive signals from a base station, and then share their received signal waveforms with collaborating MSs. In order to reduce the amount of traffic over the collaborating wireless links, distributed detection techniques are proposed, in which multiple MSs are in charge of detection by making use of both the shared signal waveforms and its own received waveform. Selection combining schemes of detected bit sequences are studied to finalize the decisions. Residual error coefficients in iterative MIMO equalization and detection are utilized in this selection. The error-ratio performance is elucidated not only by computer simulations, but also by offline processing using experimental signals recorded in a measurement campaign.

  • A Harvested Power-Oriented SWIPT Scheme in MIMO Communication Systems with Non-Linear Harvesters

    Yan CHEN  Chen LIU  Mujun QIAN  Yu HUANG  Wenfeng SUN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/01/18
      Vol:
    E104-B No:7
      Page(s):
    893-902

    This paper studies a harvested power-oriented simultaneous wireless information and power transfer (SWIPT) scheme over multiple-input multiple-output (MIMO) interference channels in which energy harvesting (EH) circuits exhibit nonlinearity. To maximize the power harvested by all receivers, we propose an algorithm to jointly optimize the transmit beamforming vectors, power splitting (PS) ratios and the receive decoding vectors. As all variables are coupled to some extent, the problem is non-convex and hard to solve. To deal with this non-convex problem, an iterative optimization method is proposed. When two variables are fixed, the third variable is optimized. Specifically, when the transmit beamforming vectors are optimized, the transferred objective function is the sum of several fractional functions. Non-linear sum-of-ratios programming is used to solve the transferred objective function. The convergence and advantage of our proposed scheme compared with traditional EH circuits are validated by simulation results.

  • A CMOS SPDT RF Switch with 68dB Isolation and 1.0dB Loss Feathering Switched Resonance Network for MIMO Applications

    Xi FU  Yun WANG  Zheng LI  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER

      Pubricized:
    2021/01/08
      Vol:
    E104-C No:7
      Page(s):
    280-288

    There are enlarged requirements of millimeter-wave beamforming phased-array transceivers and high-order modulation multi-input multi-output (MIMO) transceivers. High-performance integrated RF switches are regarded as one of the most critical components for those transceivers to support signal channel distribution and path redundancy. This paper introduces a CMOS high-isolation and low-loss RF switch with a novel switched parallel LC resonance network. The proposed single-pole double-throw (SPDT) RF switch realizes 68dB port isolation and 1.0dB insertion loss with an active area of 0.034mm2. The SPDT RF switch is composed of two series-shunt transistor pairs with body-floating technology and a switched parallel LC network. The network uses a turned-off series transistor to resonate out off-capacitance Coff. The measured output third-order intercept (OIP3) is higher than 21dBm. The proposed SPDT RF switch maintains return losses of all working ports less than 10dB from 8GHz to 20GHz. The high-performance SPDT RF switch is fabricated in standard 65-nm CMOS technology.

  • Energy-Efficient Post-Processing Technique Having High Extraction Efficiency for True Random Number Generators Open Access

    Ruilin ZHANG  Xingyu WANG  Hirofumi SHINOHARA  

     
    PAPER

      Pubricized:
    2021/01/28
      Vol:
    E104-C No:7
      Page(s):
    300-308

    In this paper, we describe a post-processing technique having high extraction efficiency (ExE) for de-biasing and de-correlating a random bitstream generated by true random number generators (TRNGs). This research is based on the N-bit von Neumann (VN_N) post-processing method. It improves the ExE of the original von Neumann method close to the Shannon entropy bound by a large N value. However, as the N value increases, the mapping table complexity increases exponentially (2N), which makes VN_N unsuitable for low-power TRNGs. To overcome this problem, at the algorithm level, we propose a waiting strategy to achieve high ExE with a small N value. At the architectural level, a Hamming weight mapping-based hierarchical structure is used to reconstruct the large mapping table using smaller tables. The hierarchical structure also decreases the correlation factor in the raw bitstream. To develop a technique with high ExE and low cost, we designed and fabricated an 8-bit von Neumann with waiting strategy (VN_8W) in a 130-nm CMOS. The maximum ExE of VN_8W is 62.21%, which is 2.49 times larger than the ExE of the original von Neumann. NIST SP 800-22 randomness test results proved the de-biasing and de-correlation abilities of VN_8W. As compared with the state-of-the-art optimized 7-element iterated von Neumann, VN_8W achieved more than 20% energy reduction with higher ExE. At 0.45V and 1MHz, VN_8W achieved the minimum energy of 0.18pJ/bit, which was suitable for sub-pJ low energy TRNGs.

  • Design Method of Variable-Latency Circuit with Tunable Approximate Completion-Detection Mechanism

    Yuta UKON  Shimpei SATO  Atsushi TAKAHASHI  

     
    PAPER

      Pubricized:
    2020/12/21
      Vol:
    E104-C No:7
      Page(s):
    309-318

    Advanced information-processing services such as computer vision require a high-performance digital circuit to perform high-load processing at high speed. To achieve high-speed processing, several image-processing applications use an approximate computing technique to reduce idle time of the circuit. However, it is difficult to design the high-speed image-processing circuit while controlling the error rate so as not to degrade service quality, and this technique is used for only a few applications. In this paper, we propose a method that achieves high-speed processing effectively in which processing time for each task is changed by roughly detecting its completion. Using this method, a high-speed processing circuit with a low error rate can be designed. The error rate is controllable, and a circuit design method to minimize the error rate is also presented in this paper. To confirm the effectiveness of our proposal, a ripple-carry adder (RCA), 2-dimensional discrete cosine transform (2D-DCT) circuit, and histogram of oriented gradients (HOG) feature calculation circuit are evaluated. Effective clock periods of these circuits obtained by our method with around 1% error rate are improved about 64%, 6%, and 12%, respectively, compared with circuits without error. Furthermore, the impact of the miscalculation on a video monitoring service using an object detection application is investigated. As a result, more than 99% of detection points required to be obtained are detected, and it is confirmed the miscalculation hardly degrades the service quality.

  • SLIT: An Energy-Efficient Reconfigurable Hardware Architecture for Deep Convolutional Neural Networks Open Access

    Thi Diem TRAN  Yasuhiko NAKASHIMA  

     
    PAPER

      Pubricized:
    2020/12/18
      Vol:
    E104-C No:7
      Page(s):
    319-329

    Convolutional neural networks (CNNs) have dominated a range of applications, from advanced manufacturing to autonomous cars. For energy cost-efficiency, developing low-power hardware for CNNs is a research trend. Due to the large input size, the first few convolutional layers generally consume most latency and hardware resources on hardware design. To address these challenges, this paper proposes an innovative architecture named SLIT to extract feature maps and reconstruct the first few layers on CNNs. In this reconstruction approach, total multiply-accumulate operations are eliminated on the first layers. We evaluate new topology with MNIST, CIFAR, SVHN, and ImageNet datasets on image classification application. Latency and hardware resources of the inference step are evaluated on the chip ZC7Z020-1CLG484C FPGA with Lenet-5 and VGG schemes. On the Lenet-5 scheme, our architecture reduces 39% of latency and 70% of hardware resources with a 0.456 W power consumption compared to previous works. Even though the VGG models perform with a 10% reduction in hardware resources and latency, we hope our overall results will potentially give a new impetus for future studies to reach a higher optimization on hardware design. Notably, the SLIT architecture efficiently merges with most popular CNNs at a slightly sacrificing accuracy of a factor of 0.27% on MNIST, ranging from 0.5% to 1.5% on CIFAR, approximately 2.2% on ImageNet, and remaining the same on SVHN databases.

  • A High-Speed PWM-Modulated Transceiver Network for Closed-Loop Channel Topology

    Kyongsu LEE  Jae-Yoon SIM  

     
    BRIEF PAPER

      Pubricized:
    2020/12/18
      Vol:
    E104-C No:7
      Page(s):
    350-354

    This paper proposes a pulse-width modulated (PWM) signaling[1] to send clock and data over a pair of channels for in-vehicle network where a closed chain of point-to-point (P2P) interconnection between electronic control units (ECU) has been established. To improve detection speed and margin of proposed receiver, we also proposed a novel clock and data recovery (CDR) scheme with 0.5 unit-interval (UI) tuning range and a PWM generator utilizing 10 equally-spaced phases. The feasibility of proposed system has been proved by successfully detecting 1.25 Gb/s data delivered via 3 ECUs and inter-channels in 180 nm CMOS technology. Compared to previous study, the proposed system achieved better efficiency in terms of power, cost, and reliability.

  • Single Image Dehazing Based on Weighted Variational Regularized Model

    Hao ZHOU  Hailing XIONG  Chuan LI  Weiwei JIANG  Kezhong LU  Nian CHEN  Yun LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/04/06
      Vol:
    E104-D No:7
      Page(s):
    961-969

    Image dehazing is of great significance in computer vision and other fields. The performance of dehazing mainly relies on the precise computation of transmission map. However, the computation of the existing transmission map still does not work well in the sky area and is easily influenced by noise. Hence, the dark channel prior (DCP) and luminance model are used to estimate the coarse transmission in this work, which can deal with the problem of transmission estimation in the sky area. Then a novel weighted variational regularization model is proposed to refine the transmission. Specifically, the proposed model can simultaneously refine the transmittance and restore clear images, yielding a haze-free image. More importantly, the proposed model can preserve the important image details and suppress image noise in the dehazing process. In addition, a new Gaussian Adaptive Weighted function is defined to smooth the contextual areas while preserving the depth discontinuity edges. Experiments on real-world and synthetic images illustrate that our method has a rival advantage with the state-of-art algorithms in different hazy environments.

  • Individuality-Preserving Silhouette Extraction for Gait Recognition and Its Speedup

    Masakazu IWAMURA  Shunsuke MORI  Koichiro NAKAMURA  Takuya TANOUE  Yuzuko UTSUMI  Yasushi MAKIHARA  Daigo MURAMATSU  Koichi KISE  Yasushi YAGI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2021/03/24
      Vol:
    E104-D No:7
      Page(s):
    992-1001

    Most gait recognition approaches rely on silhouette-based representations due to high recognition accuracy and computational efficiency. A fundamental problem for those approaches is how to extract individuality-preserved silhouettes from real scenes accurately. Foreground colors may be similar to background colors, and the background is cluttered. Therefore, we propose a method of individuality-preserving silhouette extraction for gait recognition using standard gait models (SGMs) composed of clean silhouette sequences of various training subjects as shape priors. The SGMs are smoothly introduced into a well-established graph-cut segmentation framework. Experiments showed that the proposed method achieved better silhouette extraction accuracy by more than 2.3% than representative methods and better identification rate of gait recognition (improved by more than 11.0% at rank 20). Besides, to reduce the computation cost, we introduced approximation in the calculation of dynamic programming. As a result, without reducing the segmentation accuracy, we reduced 85.0% of the computational cost.

  • Secret Key Generation Scheme Based on Deep Learning in FDD MIMO Systems

    Zheng WAN  Kaizhi HUANG  Lu CHEN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/04/07
      Vol:
    E104-D No:7
      Page(s):
    1058-1062

    In this paper, a deep learning-based secret key generation scheme is proposed for FDD multiple-input and multiple-output (MIMO) systems. We built an encoder-decoder based convolutional neural network to characterize the wireless environment to learn the mapping relationship between the uplink and downlink channel. The designed neural network can accurately predict the downlink channel state information based on the estimated uplink channel state information without any information feedback. Random secret keys can be generated from downlink channel responses predicted by the neural network. Simulation results show that deep learning based SKG scheme can achieve significant performance improvement in terms of the key agreement ratio and achievable secret key rate.

  • Cyclic LRCs with Availability from Linearized Polynomials

    Pan TAN  Zhengchun ZHOU   Haode YAN  Yong WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2021/01/18
      Vol:
    E104-A No:7
      Page(s):
    991-995

    Locally repairable codes (LRCs) with availability have received considerable attention in recent years since they are able to solve many problems in distributed storage systems such as repairing multiple node failures and managing hot data. Constructing LRCs with locality r and availability t (also called (r, t)-LRCs) with new parameters becomes an interesting research subject in coding theory. The objective of this paper is to propose two generic constructions of cyclic (r, t)-LRCs via linearized polynomials over finite fields. These two constructions include two earlier ones of cyclic LRCs from trace functions and truncated trace functions as special cases and lead to LRCs with new parameters that can not be produced by earlier ones.

  • Optimal and Asymptotically Optimal Codebooks as Regards the Levenshtein Bounds

    Hong-Li WANG  Li-Li FAN  Gang WANG  Lin-Zhi SHEN  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/01/12
      Vol:
    E104-A No:7
      Page(s):
    979-983

    In the letter, two classes of optimal codebooks and asymptotically optimal codebooks in regard to the Levenshtein bound are presented, which are based on mutually unbiased bases (MUB) and approximately mutually unbiased bases (AMUB), respectively.

1221-1240hit(21534hit)