The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

27001-27020hit(30728hit)

  • A State Estimation Method in Acoustic Environment Based on Fuzzy Observation Contaminated by Background Noise Utilization of Inverse Probability and Digital Filter

    Akira IKUTA  Mitsuo OHTA  Noboru NAKASAKO  

     
    PAPER

      Vol:
    E80-A No:5
      Page(s):
    825-832

    In the measurement of actual random phenomenon, the observed data often contain the fuzziness due to the existence of confidence limitation in measuring instruments, permissible error in experimental data, some practical simplification of evaluation procedure and a quantized error in digitized observation. In this study, by introducing the well-known fuzzy theory, a state estimation method based on the above fuzzy observations is theoretically proposed through an establishment of wide sense digital filter under the actual situation of existence of the background noise in close connection of the inverse problem. The validity and effectiveness of the proposed method are experimentally confirmed by applying it to the actual fuzzy data observed in an acoustic environment.

  • Current Topics of Microwave EMI Antennas and Measurements

    Akira SUGIURA  Nobuo KUWABARA  Takashi IWASAKI  

     
    INVITED PAPER

      Vol:
    E80-B No:5
      Page(s):
    653-662

    This paper reviews recent developments in small-sized broadband antennas for EMI measurements, especially in the microwave frequency region. Transient EMI measurements are also discussed by introducing complex antenna factors and conversion of frequency-domain data into time-domain data. This paper also focuses on considerable improvements achieved in calibration techniques for conventional EMI antennas in VHF/UHF bands.

  • A Synergetic Neural Network with Crosscorrelation Dynamics

    Masahiro NAKAGAWA  

     
    PAPER-Neural Networks

      Vol:
    E80-A No:5
      Page(s):
    881-893

    In this study we shall put forward a bidirectional synergetic neural network and investigate the crossassociation dynamics in an order parameter space. The present model is substantially based on a top-down formulation of the dynamic rule of an analog neural network in the analogy with the conventional bidirectional associative memory. It is proved that a complete association can be assured up to the same number of the embedded patterns as the number of neurons. In addition, a searching process of a couple of embedded patterns can be also realised by means of controlling attraction parameters as seen in the autoassociative synergetic models.

  • Analysis of Bifurcation Phenomena on Two Chaotic Circuits Coupled by an Inductor

    Masahiro WADA  Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Nonlinear Problems

      Vol:
    E80-A No:5
      Page(s):
    869-875

    In this paper, we investigate bifurcation phenomena ovserved from two autonomous three-dimensional chaotic circuits coupled by an inductor. Two types of synchronization modes are ovserved in this coupled system, i.e., in-phase synchronization and anti-phase synchronization. For the purpose of detailed analysis, we consider the case that the diodes in the subcircuits are assumed to operate as ideal switches. In this case Poincare map is derived as a three-dimensional map, and Lyapunov exponents can be calculated by using exact solutions. Various bifurcation phenomena related with chaos synchronization are clarified. We confirm that various bifurcation phenomena are observed from circuit experiments.

  • Improvement of Fuzzy ARTMAP Performance in Noisy Input Environment Using Weighted-Average Learning

    Jae Sul LEE  Chang Joo LEE  Choong Woong LEE  

     
    LETTER-Neural Networks

      Vol:
    E80-A No:5
      Page(s):
    932-935

    An effective learning method for the fuzzy ARTMAP in the recognition of noisy input patterns is presented. the weight vectors of the system are updated using the weighted average of the noisy input vector and the weight vector itself. This method leads to stable learning and prevents the excessive update of the weight vectors which may cause performance degradation. Simulation results show that the proposed method not only reduces the generation of spurious categories, but aloso increases the recognition ratio in the noisy environment.

  • Detection and Processing of Lightning-Sourced Magnetotelluric Transients with the Wavelet Transform

    Yuanchou ZHANG  David GOLDAK  Ken PAULSON  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:5
      Page(s):
    849-858

    In audio-frequency magnetotelluric surveys, electromagnetic radiation from worldwide thunderstorm activity is used as an energy source for geophysical exploration. Owing to its origin, such a signal is inherently transient and short lived. Therefore, special care should be taken in the detection and processing of this transient signal because the interval of time between two successive transient events contains almost no information as far as the audio frequency magnetotellurist is concerned. In this paper, a wavelet transform detection, processing and analysis technique is developed. A complex-compactly-supported wavelet, known as the Morlet wavelet, is selected as the mother wavelet. With the Morlet wavelet, lightning transients can be easily identified in the noisy recordings and the magnetotelluric impedance tensor can be computed directly in the wavelet transform domain. This scheme has been tested on real data collected in the archipelago of Svalbard, Norway as well as on five sets of synthetic data contaminated with various kinds of noise. The results show the superior performance of the wavelet transform transient detection and analysis technique.

  • High Speed Monolithically Integrated p-i-n/HBT Photoreceivers

    Kao-Chih SYAO  Augusto L. Gutierrez-AITKEN  Kyounghoon YANG  Xiangkun ZHANG  George I. HADDAD  Pallab K. BHATTACHARYA  

     
    PAPER-Optoelectronic Integrated Receivers

      Vol:
    E80-C No:5
      Page(s):
    695-702

    The characteristics of high-performance InP-based monolithically integrated single and multiple channel photoreceivers with an InGaAs p-i-n photodiode and InAlAs/InGaAs HBTs, realized by one-step molecular beam epitaxy, are described. The monolithically integrated photoreceiver includes an integrated spiral inductor following the p-i-n diode at the input of the transimpedance amplifier to enhance the circuit response at high frequencies. Crosstalk of the multi-channel photoreceiver arrays is greatly reduced by applying both a metal ground shield and dual bias. The maximum measured -3 dB bandwidth of a single-channel integrated p-i-n/HBT photoreceiver is 19.5 GHz and the minimum crosstalk of the photoreceiver arrays, with an individual channel bandwidth of 11.5 GHz, is 36 dB. At these performance levels, these OEICs represent the state-of-the-art in multichannel integrated photoreceiver arrays.

  • A Practical Trial to Realize Active Noise Control System by a Fixed Point Processing Type DSP

    Atsushi YAMAGUCHI  Hiroyuki FURUYA  Kensaku FUJII  Juro OHGA  

     
    LETTER

      Vol:
    E80-A No:5
      Page(s):
    840-843

    The filtered-x algorithm, which is widely applied to active noise control system, requires setting a small step gain. Such a small step gain reduces the noise reduction effect when the alogrithm is implemented by fixed point processing. This paper presents an experimental result that the 'polarized-g' individually normalized least mean square (INLMS) algorithm can provide almost the same noise reduction effect even in the fixed point processing of 16 bits as that in floating point processing.

  • Two-Channel Blind Deconvolution of Nonminimum Phase FIR Systems

    Ken'ichi FURUYA  Yutaka KANEDA  

     
    PAPER

      Vol:
    E80-A No:5
      Page(s):
    804-808

    A new method is proposed for recovering an unknown source signal ,which is observed through two unknown channels characterized by non-minimum phase FIR filters. Conventional methods cannot estimate the non-minimum phase parts and recover the source signal. Our method is based on computing the eigenvector corresponding to the smallest eigenvalue of the input correlation matrix and using the criterion with the multi-channnel inverse filtering theory. The impulse responses are estimated by computing the eigenvector for all modeling orders. The optimum order is searched for using the criterion and the most appropriate impulse responses are estimated. Multi-channel inverse filtering with the estimated impulse responses is used to recover the unknown source signal. Computer simulation shows that our method can estimate nonminimum phase impulse responses from two reverberant signals and recover the source signal.

  • Outage Probability Analysis in Relocatable Wireless Access Systems under Line-of-Sight Non-Rayleigh Fading

    Akira HASHIMOTO  

     
    PAPER-Radio Communication

      Vol:
    E80-B No:5
      Page(s):
    746-754

    Outage probability evaluation for a new category of wireless access systems is discussed. Wireless access systems dealt with in this paper are links which connect a portable terminal to a base station through a line-of-sight path. It is also assumed that the terminal equipment is operated in a still atate during actual communications. This mobility restriction enables the wireless access to have a capacity as high as the Mbit-order with high quality performance. Multipath fading observed in such a system may have more moderate variations than Rayleigh distribution. This paper tentatively designates the above wireless access as relocatable systems, and attempts to analyze their error performance, approximating the fading characteristics with Gamma-distribution. Also dynamic relations between bit error rate (BER) and signal-to-noise ratio are calculated under Gamma-distribution fading. Based on the analyses prediction methods for outage probability of typical QPSK systems are given, and thus it is established to design the performance aspect of relocatable systems with different features from both fixed and mobile systems.

  • State Fence DiagramsA Visual Formalism to Analyze Discrete-Event Systems

    Hiromi KOBAYASHI  Yasunari SHIDAMA  

     
    LETTER-Concurrent Systems

      Vol:
    E80-A No:5
      Page(s):
    924-927

    The usage of a diagram, which we call a state fence diagram (SFD), for analyzing discrete event systems such as reactive systems, is presented. This diagram is useful for event concurrent response and scenario analysis by using its three description styles.

  • 7-Mask Self-Aligned SiGe Base Bipolar Transistors with fT of 80 GHz

    Tsutomu TASHIRO  Takasuke HASHIMOTO  Fumihiko SATO  Yoshihiro HAYASHI  Toru TATSUMI  

     
    PAPER-Integrated Electronics

      Vol:
    E80-C No:5
      Page(s):
    707-713

    A 7-mask self-aligned SiGe base bipolar transistor has been newly developed. This transistor offers several advancements to a super self-aligned selectively grown SiGe base (SSSB) transistor which has a selectively grown SiGe-base layer formed by a cold-wall ultra high vacuum (UHV)/CVD system. The advancements are as follows: (1) a BPSG-filled arbitrarywidth trench isolation on a SOI is formed by a high-uniformity CMP with a hydro-chuck for reducing the number of isolation fabrication steps, (2) polysilicon-plug emitter and collector electrodes are made simultaneously using an in-situ phosphorusdoped polysilicon film to decrease the distance between emitter and collector electrodes and also to reduce the fabrication steps of the elecrodes, (3) a n+-buried collector layer is made by a high-energy phosphorus ion-implantation technique to eliminate collector epitaxial growth, and (4) a germanium profile in the neutral base region is optimized to increase the fT value without increasing leakage current at the base-cellector junction. In the developed transistor, a high performance of 80-GHz fT and mask-steps reduction are simultaneously achieved.

  • Convergence Analysis of Multi-Point Noise Controller

    Kazushi IKEDA  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:5
      Page(s):
    844-848

    It is usual to set single-point noise controller at each point in order to cancel noises at multiple cancelling points. How should we adapt controllers in such a case? The easiest way is to let them work individually, though it is possible to use all the error signals for one controller. In this case, there is a promblem that the controllers do not necessarily converge. In this paper, we consider the conditions of the paths under which the controllers converge when they work individually.

  • Analysis and Design of Low Loss and Low Mode-Shift Integrated Optical Waveguides Using Finite-Difference Time-Domain Method

    Takeshi DOI  Atsushi IWATA  Masataka HIROSE  

     
    PAPER

      Vol:
    E80-C No:5
      Page(s):
    625-631

    This paper describes the analysis of integrated optical waveguides using Finite-Difference Time-Domain (FDTD) method, and proposes the design methodology for low loss waveguide components: corner bends and branches. In order to integrate optical waveguides with Si VLSI technologies on a chip, the compact bends or branches are necessary. Since the optical power radiation from a bend or a branch point depends on the waveguide shapes, an accurate analysis of guided wave behavior is required. For the purpose we adopted the FDTD method which can analyze optical waveguides with a large variation of refractive index and arbitrary shape. Proposed design concept is to have all waveguides transmit only the fundamental mode and to design whole waveguides based on the fundamental mode transfer characteristics. For this design concept, waveguide components are required to have not only low radiation loss but also a little mode shift from the fundamental mode. The bend using the double-reflection mirrors and the branch using a slit are proposed for suppressing the mode shift and improving radiation loss. By the FDTD analysis, the following results have been obtained. The radiation loss and mode shift of double reflection bend are 1% and 4%, and those of the slit branch are 2% and 5%, respectively, in 2 µm width waveguide.

  • Phased-Array-Based Photonic Integrated Circuits for Wavelength Division Multiplexing Applications

    A.A.M.(Toine) STARING  Meint K. SMIT  

     
    INVITED PAPER-Semiconductor Devices, Circuits and Processing

      Vol:
    E80-C No:5
      Page(s):
    646-653

    Wavelength Division Multiplexing (WDM) technology provides many options to the design of flexible alloptical networks. To exploit these options to their full potential, Photonic Integrated Circuits (PICs) for wavelength routing and switching will be indispensable. One of the basic building blocks of such PICs is the planar phased-array (PHASAR) wavelength demultiplexer. The monolithic integration of PHASARs with photodetectors, amplifiers, and other waveguide-based (passive) components is discussed.

  • Temperature-Independent Narrow-Band Optical Filter by an Athermal Waveguide

    Yasuo KOKUBUN  Shigeru YONEDA  Hiroaki TANAKA  

     
    PAPER

      Vol:
    E80-C No:5
      Page(s):
    632-639

    The temperature dependence of the central wavelength of narrow-band filters is a serious problem for the dense WDM systems. In this study, we realized a temperature independent narrow-band filter at 1.3 µm wavelength. First, we designed an athermal waveguide in which optical path length is independent of temperature by using a finite element method. Using this athermal waveguide, we designed and fabricated a ring resonator. As a result, we successfully decreased the temperature coefficient of central wavelength to 710-4 nm/K, which is 7% of conventional SiO2 waveguide filters and 0.7% of conventional semiconductor waveguide filters.

  • Inverse Filter of Sound Reproduction Systems Using Regularization

    Hironori TOKUNO  Ole KIRKEBY  Philip A. NELSON  Hareo HAMADA  

     
    PAPER

      Vol:
    E80-A No:5
      Page(s):
    809-820

    We present a very fast method for calculating an inverse filter for audio reproduction system. The proposed method of FFT-based inverse filter design, which combines the well-known principles of least squares optimization and regularization, can be used for inverting systems comprising any number of inputs and outputs. The method was developed for the purpose of designing digital filters for multi-channel sound reproduction. It is typically several hundred times faster than a conventional steepest descent algorithm implemented in the time domain. A matrix of causal inverse FIR (finite impulse response) filters is calculated by optimizing the performance of the filters at a large number of discrete frequencies. Consequently, this deconvolution method is useful only when it is feasible in practice to use relatively long inverse filters. The circular convolution effect in the time domain is controlled by zeroth-order regularization of the inversion problem. It is necessary to set the regularization parameter β to an appropriate value, but the exact value of β is usually not critical. For single-channel systems, a reliable numerical method for determining β without the need for subjective assessment is given. The deconvolution method is based on the analysis of a matrix of exact least squares inverse filters. The positions of the poles of those filters are shown to be particularly important.

  • Conjugate Gradient Projection onto Convex Sets for Sparse Array Acoustic Holography

    Kenbu TERAMOTO  

     
    PAPER

      Vol:
    E80-A No:5
      Page(s):
    833-839

    This paper describes a novel image reconstruction algorithm and experimental results of a 3-dimensional acoustical holographic imaging system which has a limited number of transducers distributed sparsely. The proposed algorithm is based on the conjugate gradient projection onto convex sets (CGPOCS), which allows the addition of convex sets constrained by a priori information to reduce ambiguity and extract resolution iteratively. By several experiments, it is proven that the concept of the new 3-D acoustic image reconstruction algorithm has following improvements:1. the artifacts caused by the spurious lobes can be reduced under the condition that the inter-spacing of elements is larger than the wave length,2. the instability caused by the lack of information about the actual point spread function (PSF) can be reduced,3. the actual PSF can be estimated concurrently with during the image reconstruction process.

  • Multi-Frequency Signal Classification by Multilayer Neural Networks and Linear Filter Methods

    Kazuyuki HARA  Kenji NAKAYAMA  

     
    PAPER-Neural Networks

      Vol:
    E80-A No:5
      Page(s):
    894-902

    This paper compares signal classification performance of multilayer neural networks (MLNNs) and linear filters (LFs). The MLNNs are useful for arbitrary waveform signal classification. On the other hand, LFS are useful for the signals, which are specified with frequency components. In this paper, both methods are compared based on frequency selective performance. The signals to be classified contain several frequency components. Furthermore, effects of the number of the signal samples are investigated. In this case, the frequency information may be lost to some extent. This makes the classification problems difficult. From practical viewpoint, computational complexity is also limited to the same level in both methods.IIR and FIR filters are compared. FIR filters with a direct form can save computations, which is independent of the filter order. IIR filters, on the other hand, cannot provide good signal classification deu to their phase distortion, and require a large amount of computations due to their recursive structure. When the number of the input samples is strictly limited, the signal vectors are widely distributed in the multi-dimensional signal space. In this case, signal classification by the LF method cannot provide a good performance. Because, they are designed to extract the frequency components. On the other hand, the MLNN method can form class regions in the signal vector space with high degree of freedom.

  • Parallel Universal Simulation and Self-Reproduction in Cellular Spaces

    Katsuhiko NAKAMURA  

     
    PAPER-Automata,Languages and Theory of Computing

      Vol:
    E80-D No:5
      Page(s):
    547-552

    This paper describes cellular spaces (or cellular automata) with capabilities of parallel self-reproduction and of parallel universal simulation of other cellular spaces. It is shown that there is a 1-dimensional cellular space U, called a parallel universal simulator, that can simulate any given 1-dimensional cellular space S in the sense that if an initial configuration of U has a coded information of both the local function and an initial configuration of S, then U has the same computation result that S has and the computation time of U is proportional to that of S. Two models of nontrivial parallel self-reproduction are also shown. One model is based on "state-exchange" method, and the other is based on a fixed point program of the parallel universal simulator.

27001-27020hit(30728hit)