The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30808hit)

1801-1820hit(30808hit)

  • PAM-4 Eye-Opening Monitor Technique Using Gaussian Mixture Model for Adaptive Equalization

    Yosuke IIJIMA  Keigo TAYA  Yasushi YUMINAKA  

     
    PAPER-Circuit Technologies

      Pubricized:
    2021/04/21
      Vol:
    E104-D No:8
      Page(s):
    1138-1145

    To meet the increasing demand for high-speed communication in VLSI (very large-scale integration) systems, next-generation high-speed data transmission standards (e.g., IEEE 802.3bs and PCIe 6.0) will adopt four-level pulse amplitude modulation (PAM-4) for data coding. Although PAM-4 is spectrally efficient to mitigate inter-symbol interference caused by bandwidth-limited wired channels, it is more sensitive than conventional non-return-to-zero line coding. To evaluate the received signal quality when using adaptive coefficient settings for a PAM-4 equalizer during data transmission, we propose an eye-opening monitor technique based on machine learning. The proposed technique uses a Gaussian mixture model to classify the received PAM-4 symbols. Simulation and experimental results demonstrate the feasibility of adaptive equalization for PAM-4 coding.

  • The Fractional-N All Digital Frequency Locked Loop with Robustness for PVT Variation and Its Application for the Microcontroller Unit

    Ryoichi MIYAUCHI  Akio YOSHIDA  Shuya NAKANO  Hiroki TAMURA  Koichi TANNO  Yutaka FUKUCHI  Yukio KAWAMURA  Yuki KODAMA  Yuichi SEKIYA  

     
    PAPER-Circuit Technologies

      Pubricized:
    2021/04/01
      Vol:
    E104-D No:8
      Page(s):
    1146-1153

    This paper describes the Fractional-N All Digital Frequency Locked Loop (ADFLL) with Robustness for PVT variation and its application for the microcontroller unit. The conventional FLL is difficult to achieve the required specification by using the fine CMOS process. Especially, the conventional FLL has some problems such as unexpected operation and long lock time that are caused by PVT variation. To overcome these problems, we propose a new ADFLL which uses dynamic selecting digital filter coefficients. The proposed ADFLL was evaluatied through the HSPICE simulation and fabricating chips using a 0.13 µm CMOS process. From these results, we observed the proposed ADFLL has robustness for PVT variation by using dynamic selecting digital filter coefficient, and the lock time is improved up to 57%, clock jitter is 0.85 nsec.

  • A Hybrid Approach for Paper Recommendation

    Ying KANG  Aiqin HOU  Zimin ZHAO  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1222-1231

    Paper recommendation has become an increasingly important yet challenging task due to the rapidly expanding volume and scope of publications in the broad research community. Due to the lack of user profiles in public digital libraries, most existing methods for paper recommendation are through paper similarity measurements based on citations or contents, and still suffer from various performance issues. In this paper, we construct a graphical form of citation relations to identify relevant papers and design a hybrid recommendation model that combines both citation- and content-based approaches to measure paper similarities. Considering that citations at different locations in one article are likely of different significance, we define a concept of citation similarity with varying weights according to the sections of citations. We evaluate the performance of our recommendation method using Spearman correlation on real publication data from public digital libraries such as CiteSeer and Wanfang. Extensive experimental results show that the proposed hybrid method exhibits better performance than state-of-the-art techniques, and achieves 40% higher recommendation accuracy in average in comparison with citation-based approaches.

  • On Measurement System for Frequency of Uterine Peristalsis

    Ryosuke NISHIHARA  Hidehiko MATSUBAYASHI  Tomomoto ISHIKAWA  Kentaro MORI  Yutaka HATA  

     
    PAPER-Medical Applications

      Pubricized:
    2021/05/12
      Vol:
    E104-D No:8
      Page(s):
    1154-1160

    The frequency of uterine peristalsis is closely related to the success rate of pregnancy. An ultrasonic imaging is almost always employed for the measure of the frequency. The physician subjectively evaluates the frequency from the ultrasound image by the naked eyes. This paper aims to measure the frequency of uterine peristalsis from the ultrasound image. The ultrasound image consists of relative amounts in the brightness, and the contour of the uterine is not clear. It was not possible to measure the frequency by using the inter-frame difference and optical flow, which are the representative methods of motion detection, since uterine peristaltic movement is too small to apply them. This paper proposes a measurement method of the frequency of the uterine peristalsis from the ultrasound image in the implantation phase. First, traces of uterine peristalsis are semi-automatically done from the images with location-axis and time-axis. Second, frequency analysis of the uterine peristalsis is done by Fourier transform for 3 minutes. As a result, the frequency of uterine peristalsis was known as the frequency with the dominant frequency ingredient with maximum value among the frequency spectrums. Thereby, we evaluate the number of the frequency of uterine peristalsis quantitatively from the ultrasound image. Finally, the success rate of pregnancy is calculated from the frequency based on Fuzzy logic. This enabled us to evaluate the success rate of pregnancy by measuring the uterine peristalsis from the ultrasound image.

  • Toward Human-Friendly ASR Systems: Recovering Capitalization and Punctuation for Vietnamese Text

    Thi Thu HIEN NGUYEN  Thai BINH NGUYEN  Ngoc PHUONG PHAM  Quoc TRUONG DO  Tu LUC LE  Chi MAI LUONG  

     
    PAPER

      Pubricized:
    2021/05/25
      Vol:
    E104-D No:8
      Page(s):
    1195-1203

    Speech recognition is a technique that recognizes words and sentences in audio form and converts them into text sentences. Currently, with the advancement of deep learning technologies, speech recognition has achieved very satisfactory results close to human abilities. However, there are still limitations in identification results such as lack of punctuation, capitalization, and standardized numerical data. Vietnamese also contains local words, homonyms, etc, which make it difficult to read and understand the identification results for users as well as to perform the next tasks in Natural Language Processing (NLP). In this paper, we propose to combine the transformer decoder with conditional random field (CRF) to restore punctuation and capitalization for the Vietnamese automatic speech recognition (ASR) output. By chunking input sentences and merging output sequences, it is possible to handle longer strings with greater accuracy. Experiments show that the method proposed in the Vietnamese post-speech recognition dataset delivers the best results.

  • SP-DARTS: Synchronous Progressive Differentiable Neural Architecture Search for Image Classification

    Zimin ZHAO  Ying KANG  Aiqin HOU  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/23
      Vol:
    E104-D No:8
      Page(s):
    1232-1238

    Differentiable neural architecture search (DARTS) is now a widely disseminated weight-sharing neural architecture search method and it consists of two stages: search and evaluation. However, the original DARTS suffers from some well-known shortcomings. Firstly, the width and depth of the network, as well as the operation of two stages are discontinuous, which causes a performance collapse. Secondly, DARTS has a high computational overhead. In this paper, we propose a synchronous progressive approach to solve the discontinuity problem for network depth and width and we use the 0-1 loss function to alleviate the discontinuity problem caused by the discretization of operation. The computational overhead is reduced by using the partial channel connection. Besides, we also discuss and propose a solution to the aggregation of skip operations during the search process of DARTS. We conduct extensive experiments on CIFAR-10 and WANFANG datasets, specifically, our approach reduces search time significantly (from 1.5 to 0.1 GPU days) and improves the accuracy of image recognition.

  • CJAM: Convolutional Neural Network Joint Attention Mechanism in Gait Recognition

    Pengtao JIA  Qi ZHAO  Boze LI  Jing ZHANG  

     
    PAPER

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1239-1249

    Gait recognition distinguishes one individual from others according to the natural patterns of human gaits. Gait recognition is a challenging signal processing technology for biometric identification due to the ambiguity of contours and the complex feature extraction procedure. In this work, we proposed a new model - the convolutional neural network (CNN) joint attention mechanism (CJAM) - to classify the gait sequences and conduct person identification using the CASIA-A and CASIA-B gait datasets. The CNN model has the ability to extract gait features, and the attention mechanism continuously focuses on the most discriminative area to achieve person identification. We present a comprehensive transformation from gait image preprocessing to final identification. The results from 12 experiments show that the new attention model leads to a lower error rate than others. The CJAM model improved the 3D-CNN, CNN-LSTM (long short-term memory), and the simple CNN by 8.44%, 2.94% and 1.45%, respectively.

  • Improved Hybrid Feature Selection Framework

    Weizhi LIAO  Guanglei YE  Weijun YAN  Yaheng MA  Dongzhou ZUO  

     
    PAPER

      Pubricized:
    2021/05/12
      Vol:
    E104-D No:8
      Page(s):
    1266-1273

    An efficient Feature selection strategy is important in the dimension reduction of data. Extensive existing research efforts could be summarized into three classes: Filter method, Wrapper method, and Embedded method. In this work, we propose an integrated two-stage feature extraction method, referred to as FWS, which combines Filter and Wrapper method to efficiently extract important features in an innovative hybrid mode. FWS conducts the first level of selection to filter out non-related features using correlation analysis and the second level selection to find out the near-optimal sub set that capturing valuable discrete features by evaluating the performance of predictive model trained on such sub set. Compared with the technologies such as mRMR and Relief-F, FWS significantly improves the detection performance through an integrated optimization strategy.Results show the performance superiority of the proposed solution over several well-known methods for feature selection.

  • Matrix Factorization Based Recommendation Algorithm for Sharing Patent Resource

    Xueqing ZHANG  Xiaoxia LIU  Jun GUO  Wenlei BAI  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1250-1257

    As scientific and technological resources are experiencing information overload, it is quite expensive to find resources that users are interested in exactly. The personalized recommendation system is a good candidate to solve this problem, but data sparseness and the cold starting problem still prevent the application of the recommendation system. Sparse data affects the quality of the similarity measurement and consequently the quality of the recommender system. In this paper, we propose a matrix factorization recommendation algorithm based on similarity calculation(SCMF), which introduces potential similarity relationships to solve the problem of data sparseness. A penalty factor is adopted in the latent item similarity matrix calculation to capture more real relationships furthermore. We compared our approach with other 6 recommendation algorithms and conducted experiments on 5 public data sets. According to the experimental results, the recommendation precision can improve by 2% to 9% versus the traditional best algorithm. As for sparse data sets, the prediction accuracy can also improve by 0.17% to 18%. Besides, our approach was applied to patent resource exploitation provided by the wanfang patents retrieval system. Experimental results show that our method performs better than commonly used algorithms, especially under the cold starting condition.

  • Collaborative Filtering Auto-Encoders for Technical Patent Recommending

    Wenlei BAI  Jun GUO  Xueqing ZHANG  Baoying LIU  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1258-1265

    To find the exact items from the massive patent resources for users is a matter of great urgency. Although the recommender systems have shot this problem to a certain extent, there are still some challenging problems, such as tracking user interests and improving the recommendation quality when the rating matrix is extremely sparse. In this paper, we propose a novel method called Collaborative Filtering Auto-Encoder for the top-N recommendation. This method employs Auto-Encoders to extract the item's features, converts a high-dimensional sparse vector into a low-dimensional dense vector, and then uses the dense vector for similarity calculation. At the same time, to make the recommendation list closer to the user's recent interests, we divide the recommendation weight into time-based and recent similarity-based weights. In fact, the proposed method is an improved, item-based collaborative filtering model with more flexible components. Experimental results show that the method consistently outperforms state-of-the-art top-N recommendation methods by a significant margin on standard evaluation metrics.

  • Two-Stage Fine-Grained Text-Level Sentiment Analysis Based on Syntactic Rule Matching and Deep Semantic

    Weizhi LIAO  Yaheng MA  Yiling CAO  Guanglei YE  Dongzhou ZUO  

     
    PAPER

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1274-1280

    Aiming at the problem that traditional text-level sentiment analysis methods usually ignore the emotional tendency corresponding to the object or attribute. In this paper, a novel two-stage fine-grained text-level sentiment analysis model based on syntactic rule matching and deep semantics is proposed. Based on analyzing the characteristics and difficulties of fine-grained sentiment analysis, a two-stage fine-grained sentiment analysis algorithm framework is constructed. In the first stage, the objects and its corresponding opinions are extracted based on syntactic rules matching to obtain preliminary objects and opinions. The second stage based on deep semantic network to extract more accurate objects and opinions. Aiming at the problem that the extraction result contains multiple objects and opinions to be matched, an object-opinion matching algorithm based on the minimum lexical separation distance is proposed to achieve accurate pairwise matching. Finally, the proposed algorithm is evaluated on several public datasets to demonstrate its practicality and effectiveness.

  • Patent One-Stop Service Business Model Based on Scientific and Technological Resource Bundle

    Fanying ZHENG  Yangjian JI  Fu GU  Xinjian GU  Jin ZHANG  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1281-1291

    To address slow response and scattered resources in patent service, this paper proposes a one-stop service business model based on scientific and technological resource bundle. The proposed one-step model is composed of a project model, a resource bundle model and a service product model through Web Service integration. This paper describes the patent resource bundle model from the aspects of content and context, and designs the configuration of patent service products and patent resource bundle. The model is then applied to the patent service of the Yangtze River Delta urban agglomeration in China, and the monthly agent volume increased by 38.8%, and the average response time decreased by 14.3%. Besides, it is conducive to improve user satisfaction and resource sharing efficiency of urban agglomeration.

  • Remote Dynamic Reconfiguration of a Multi-FPGA System FiC (Flow-in-Cloud)

    Kazuei HIRONAKA  Kensuke IIZUKA  Miho YAMAKURA  Akram BEN AHMED  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2021/05/12
      Vol:
    E104-D No:8
      Page(s):
    1321-1331

    Multi-FPGA systems have been receiving a lot of attention as a low cost and energy efficient system for Multi-access Edge Computing (MEC). For such purpose, a bare-metal multi-FPGA system called FiC (Flow-in-Cloud) is under development. In this paper, we introduce the FiC multi FPGA cluster which is applied partial reconfiguration (PR) FPGA design flow to support online user defined accelerator replacement while executing FPGA interconnection network and its low-level multiple FPGA management software called remote PR manager. With the remote PR manager, the user can define the FiC FPGA cluster setup by JSON and control the cluster from user application with the cooperation of simple cluster management tool / library called ficmgr on the client host and REST API service provider called ficwww on Raspberry Pi 3 (RPi3) on each node. According to the evaluation results with a prototype FiC FPGA cluster system with 12 nodes, using with online application replacement by PR and on-the-fly FPGA bitstream compression, the time for FPGA bitstream distribution was reduced to 1/17 and the total cluster setup time was reduced by 21∼57% than compared to cluster setup with full configuration FPGA bitstream.

  • FCA-BNN: Flexible and Configurable Accelerator for Binarized Neural Networks on FPGA

    Jiabao GAO  Yuchen YAO  Zhengjie LI  Jinmei LAI  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/05/19
      Vol:
    E104-D No:8
      Page(s):
    1367-1377

    A series of Binarized Neural Networks (BNNs) show the accepted accuracy in image classification tasks and achieve the excellent performance on field programmable gate array (FPGA). Nevertheless, we observe existing designs of BNNs are quite time-consuming in change of the target BNN and acceleration of a new BNN. Therefore, this paper presents FCA-BNN, a flexible and configurable accelerator, which employs the layer-level configurable technique to execute seamlessly each layer of target BNN. Initially, to save resource and improve energy efficiency, the hardware-oriented optimal formulas are introduced to design energy-efficient computing array for different sizes of padded-convolution and fully-connected layers. Moreover, to accelerate the target BNNs efficiently, we exploit the analytical model to explore the optimal design parameters for FCA-BNN. Finally, our proposed mapping flow changes the target network by entering order, and accelerates a new network by compiling and loading corresponding instructions, while without loading and generating bitstream. The evaluations on three major structures of BNNs show the differences between inference accuracy of FCA-BNN and that of GPU are just 0.07%, 0.31% and 0.4% for LFC, VGG-like and Cifar-10 AlexNet. Furthermore, our energy-efficiency results achieve the results of existing customized FPGA accelerators by 0.8× for LFC and 2.6× for VGG-like. For Cifar-10 AlexNet, FCA-BNN achieves 188.2× and 60.6× better than CPU and GPU in energy efficiency, respectively. To the best of our knowledge, FCA-BNN is the most efficient design for change of the target BNN and acceleration of a new BNN, while keeps the competitive performance.

  • Improvement of CT Reconstruction Using Scattered X-Rays

    Shota ITO  Naohiro TODA  

     
    PAPER-Biological Engineering

      Pubricized:
    2021/05/06
      Vol:
    E104-D No:8
      Page(s):
    1378-1385

    A neural network that outputs reconstructed images based on projection data containing scattered X-rays is presented, and the proposed scheme exhibits better accuracy than conventional computed tomography (CT), in which the scatter information is removed. In medical X-ray CT, it is a common practice to remove scattered X-rays using a collimator placed in front of the detector. In this study, the scattered X-rays were assumed to have useful information, and a method was devised to utilize this information effectively using a neural network. Therefore, we generated 70,000 projection data by Monte Carlo simulations using a cube comprising 216 (6 × 6 × 6) smaller cubes having random density parameters as the target object. For each projection simulation, the densities of the smaller cubes were reset to different values, and detectors were deployed around the target object to capture the scattered X-rays from all directions. Then, a neural network was trained using these projection data to output the densities of the smaller cubes. We confirmed through numerical evaluations that the neural-network approach that utilized scattered X-rays reconstructed images with higher accuracy than did the conventional method, in which the scattered X-rays were removed. The results of this study suggest that utilizing the scattered X-ray information can help significantly reduce patient dosing during imaging.

  • A Two-Stage Attention Based Modality Fusion Framework for Multi-Modal Speech Emotion Recognition

    Dongni HU  Chengxin CHEN  Pengyuan ZHANG  Junfeng LI  Yonghong YAN  Qingwei ZHAO  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2021/04/30
      Vol:
    E104-D No:8
      Page(s):
    1391-1394

    Recently, automated recognition and analysis of human emotion has attracted increasing attention from multidisciplinary communities. However, it is challenging to utilize the emotional information simultaneously from multiple modalities. Previous studies have explored different fusion methods, but they mainly focused on either inter-modality interaction or intra-modality interaction. In this letter, we propose a novel two-stage fusion strategy named modality attention flow (MAF) to model the intra- and inter-modality interactions simultaneously in a unified end-to-end framework. Experimental results show that the proposed approach outperforms the widely used late fusion methods, and achieves even better performance when the number of stacked MAF blocks increases.

  • Unified Likelihood Ratio Estimation for High- to Zero-Frequency N-Grams

    Masato KIKUCHI  Kento KAWAKAMI  Kazuho WATANABE  Mitsuo YOSHIDA  Kyoji UMEMURA  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2021/02/08
      Vol:
    E104-A No:8
      Page(s):
    1059-1074

    Likelihood ratios (LRs), which are commonly used for probabilistic data processing, are often estimated based on the frequency counts of individual elements obtained from samples. In natural language processing, an element can be a continuous sequence of N items, called an N-gram, in which each item is a word, letter, etc. In this paper, we attempt to estimate LRs based on N-gram frequency information. A naive estimation approach that uses only N-gram frequencies is sensitive to low-frequency (rare) N-grams and not applicable to zero-frequency (unobserved) N-grams; these are known as the low- and zero-frequency problems, respectively. To address these problems, we propose a method for decomposing N-grams into item units and then applying their frequencies along with the original N-gram frequencies. Our method can obtain the estimates of unobserved N-grams by using the unit frequencies. Although using only unit frequencies ignores dependencies between items, our method takes advantage of the fact that certain items often co-occur in practice and therefore maintains their dependencies by using the relevant N-gram frequencies. We also introduce a regularization to achieve robust estimation for rare N-grams. Our experimental results demonstrate that our method is effective at solving both problems and can effectively control dependencies.

  • An Algebraic Approach to Verifying Galois-Field Arithmetic Circuits with Multiple-Valued Characteristics

    Akira ITO  Rei UENO  Naofumi HOMMA  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1083-1091

    This study presents a formal verification method for Galois-field (GF) arithmetic circuits with the characteristics of more than two values. The proposed method formally verifies the correctness of circuit functionality (i.e., the input-output relations given as GF-polynomials) by checking the equivalence between a specification and a gate-level netlist. We represent a netlist using simultaneous algebraic equations and solve them based on a novel polynomial reduction method that can be efficiently applied to arithmetic over extension fields $mathbb{F}_{p^m}$, where the characteristic p is larger than two. By using the reverse topological term order to derive the Gröbner basis, our method can complete the verification, even when a target circuit includes bugs. In addition, we introduce an extension of the Galois-Field binary moment diagrams to perform the polynomial reductions faster. Our experimental results show that the proposed method can efficiently verify practical $mathbb{F}_{p^m}$ arithmetic circuits, including those used in modern cryptography. Moreover, we demonstrate that the extended polynomial reduction technique can enable verification that is up to approximately five times faster than the original one.

  • Extracting Knowledge Entities from Sci-Tech Intelligence Resources Based on BiLSTM and Conditional Random Field

    Weizhi LIAO  Mingtong HUANG  Pan MA  Yu WANG  

     
    PAPER

      Pubricized:
    2021/04/22
      Vol:
    E104-D No:8
      Page(s):
    1214-1221

    There are many knowledge entities in sci-tech intelligence resources. Extracting these knowledge entities is of great importance for building knowledge networks, exploring the relationship between knowledge, and optimizing search engines. Many existing methods, which are mainly based on rules and traditional machine learning, require significant human involvement, but still suffer from unsatisfactory extraction accuracy. This paper proposes a novel approach for knowledge entity extraction based on BiLSTM and conditional random field (CRF).A BiLSTM neural network to obtain the context information of sentences, and CRF is then employed to integrate global label information to achieve optimal labels. This approach does not require the manual construction of features, and outperforms conventional methods. In the experiments presented in this paper, the titles and abstracts of 20,000 items in the existing sci-tech literature are processed, of which 50,243 items are used to build benchmark datasets. Based on these datasets, comparative experiments are conducted to evaluate the effectiveness of the proposed approach. Knowledge entities are extracted and corresponding knowledge networks are established with a further elaboration on the correlation of two different types of knowledge entities. The proposed research has the potential to improve the quality of sci-tech information services.

  • Scientific and Technological Resource Sharing Model Based on Few-Shot Relational Learning

    Yangshengyan LIU  Fu GU  Yangjian JI  Yijie WU  Jianfeng GUO  Xinjian GU  Jin ZHANG  

     
    PAPER

      Pubricized:
    2021/04/21
      Vol:
    E104-D No:8
      Page(s):
    1302-1312

    Resource sharing is to ensure required resources available for their demanders. However, due to the lack of proper sharing model, the current sharing rate of the scientific and technological resources is low, impeding technological innovation and value chain development. Here we propose a novel method to share scientific and technological resources by storing resources as nodes and correlations as links to form a complex network. We present a few-shot relational learning model to solve the cold-start and long-tail problems that are induced by newly added resources. Experimentally, using NELL-One and Wiki-One datasets, our one-shot results outperform the baseline framework - metaR by 40.2% and 4.1% on MRR in Pre-Train setting. We also show two practical applications, a resource graph and a resource map, to demonstrate how the complex network helps resource sharing.

1801-1820hit(30808hit)