The search functionality is under construction.

Keyword Search Result

[Keyword] Tomlinson-Harashima precoding(17hit)

1-17hit
  • An Adaptive Bit Allocation for Maximum Bit-Rate Tomlinson-Harashima Precoding Open Access

    Shigenori KINJO  Shuichi OHNO  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:10
      Page(s):
    1438-1442

    An adaptive bit allocation scheme for zero-forcing (ZF) Tomlinson-Harashima precoding (THP) is proposed. The ZF-THP enables us to achieve feasible bit error rate (BER) performance when appropriate substream permutations are installed at the transmitter. In this study, the number of bits in each substream is adaptively allocated to minimize the average BER in fading environments. Numerical examples are provided to compare the proposed method with eigenbeam space division multiplexing (E-SDM) method.

  • Double-Rate Tomlinson-Harashima Precoding for Multi-Valued Data Transmission

    Yosuke IIJIMA  Yasushi YUMINAKA  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1611-1617

    The growing demand for high-speed data communication has continued to meet the need for ever-increasing I/O bandwidth in recent VLSI systems. However, signal integrity issues, such as intersymbol interference (ISI) and reflections, make the channel band-limited at high-speed data rates. We propose high-speed data transmission techniques for VLSI systems using Tomlinson-Harashima precoding (THP). Because THP can eliminate ISI by inverting the characteristics of channels with limited peak and average power at the transmitter, it is suitable for implementing advanced low-voltage and high-speed VLSI systems. This paper presents a novel double-rate THP equalization technique especially intended for multi-valued data transmission to further improve THP performance. Simulation and measurement results show that the proposed THP equalization with a double sampling rate can enhance the data transition time and, therefore, improve the eye opening.

  • Single-Carrier Multi-User MIMO Downlink with Time-Domain Tomlinson-Harashima Precoding

    Shohei YOSHIOKA  Shinya KUMAGAI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:2
      Page(s):
    471-480

    Nonlinear precoding improves the downlink bit error rate (BER) performance of multi-user multiple-input multiple-output (MU-MIMO). Broadband single-carrier (SC) block transmission can improve the capability that nonlinear precoding reduces BER, as it provides frequency diversity gain. This paper considers Tomlinson-Harashima precoding (THP) as a nonlinear precoding scheme for SC-MU-MIMO downlink. In the SC-MU-MIMO downlink with frequency-domain THP proposed by Degen and Rrühl (called SC-FDTHP), the inter-symbol interference (ISI) is suppressed by transmit frequency-domain equalization (FDE) after suppressing the inter-user interference (IUI) by frequency-domain THP. Transmit FDE increases the signal variance, hence transmission performance improvement is limited. In this paper, we propose a new SC-MU-MIMO downlink with time-domain THP which can pre-remove both ISI and IUI (called SC-TDTHP) if perfect channel state information (CSI) is available. Modulo operation in THP suppresses the signal variance increase caused by ISI and IUI pre-removal, and hence the transmission quality improves. For further performance improvement, vector perturbation is introduced to SC-TDTHP (called SC-TDTHP w/VP). Computer simulation shows that SC-TDTHP achieves better BER performance than SC-FDTHP and that SC-TDTHP w/VP offers further improvement in BER performance over SC-MU-MIMO with VP (called SC-VP). Computational complexity is also compared and it is showed that SC-TDTHP and SC-TDTHP w/VP incur higher computational complexity than SC-FDTHP but lower than SC-VP.

  • Tomlinson-Harashima Precoding with Substream Permutations Based on the Bit Rate Maximization for Single-User MIMO Systems

    Shigenori KINJO  Shuichi OHNO  

     
    PAPER-Communication Theory and Signals

      Vol:
    E98-A No:5
      Page(s):
    1095-1104

    In this paper, we propose a zero-forcing (ZF) Tomlinson-Harashima precoding (THP) with substream permutations based on the bit rate maximization for single-user MIMO (SU-MIMO) systems. We study the effect of substream permutations on the ZF-THP SU-MIMO systems, when the mean squared error (MSE) and the bit rate are adopted for the selection of the permutation matrix as criteria. Based on our analysis, we propose a method to increase the bit rate by substream permutations, and derive QR and Cholesky decomposition-based algorithms which realize the proposed method. Furthermore, to improve the error rate performance, we apply zero transmission to subchannels with low signal-to-noise ratios. Numerical examples are provided to demonstrate the effectiveness of the proposed THP MIMO system.

  • High-Speed Interconnection for VLSI Systems Using Multiple-Valued Signaling with Tomlinson-Harashima Precoding

    Yosuke IIJIMA  Yuuki TAKADA  Yasushi YUMINAKA  

     
    PAPER-Communication for VLSI

      Vol:
    E97-D No:9
      Page(s):
    2296-2303

    The data rate of VLSI interconnections has been increasing according to the demand for high-speed operation of semiconductors such as CPUs. To realize high performance VLSI systems, high-speed data communication has become an important factor. However, at high-speed data rates, it is difficult to achieve accurate communication without bit errors because of inter-symbol interference (ISI). This paper presents high-speed data communication techniques for VLSI systems using Tomlinson-Harashima Precoding (THP). Since THP can eliminate the ISI with limiting average and peak power of transmitter signaling, THP is suitable for implementing advanced low-voltage VLSI systems. In this paper, 4-PAM (Pulse amplitude modulation) with THP has been employed to achieve high-speed data communication in VLSI systems. Simulation results show that THP can remove the ISI without increasing peak and average power of a transmitter. Moreover, simulation results clarify that multiple-valued data communication is very effective to reduce implementation costs for realizing high-speed serial links.

  • Effective Per-Antenna SSLNR Precoding for MIMO Broadcast Channel

    Xunyong ZHANG  Chen HE  Lingge JIANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:2
      Page(s):
    665-668

    In this paper, an effective per-antenna successive signal-to-leakage-plus-noise-ratio (PA-SSLNR) based precoding is proposed for multi-user multiple-input multiple-output (MIMO) broadcast channel. The signal-to-leakage-plus-noise-ratio (SLNR) of per-antenna is calculated only using the unknown leakages and the known leakages are cancelled at the transmit side by Tomlinson-Harashima Precoding (THP). The proposed scheme is different from per-user SSLNR. It does not need QR decomposition. The proposed precoding scheme is further improved by ordering antennas. Simulation results show that the proposed schemes exhibit a considerable bit error rate (BER) improvement over conventional SLNR scheme.

  • A VLSI Design of a Tomlinson-Harashima Precoder for MU-MIMO Systems Using Arrayed Pipelined Processing

    Kosuke SHIMAZAKI  Shingo YOSHIZAWA  Yasuyuki HATAKAWA  Tomoko MATSUMOTO  Satoshi KONISHI  Yoshikazu MIYANAGA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E96-A No:11
      Page(s):
    2114-2119

    This paper presents a VLSI design of a Tomlinson-Harashima (TH) precoder for multi-user MIMO (MU-MIMO) systems. The TH precoder consists of LQ decomposition (LQD), interference cancellation (IC), and weight coefficient multiplication (WCM) units. The LQ decomposition unit is based on an application specific instruction-set processor (ASIP) architecture with floating-point arithmetic for high accuracy operations. In the IC and WCM units with fixed-point arithmetic, the proposed architecture uses an arrayed pipeline structure to shorten a circuit critical path delay. The implementation result shows that the proposed architecture reduces circuit area and power consumption by 11% and 15%, respectively.

  • A Low Complexity Precoding Transceiver Design for Double STBC System

    Juinn-Horng DENG  Shiang-Chyun JHAN  Sheng-Yang HUANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:4
      Page(s):
    1075-1080

    A precoding design for double space-time block coding (STBC) system is investigated in this paper, i.e., the joint processing of STBC and dirty paper coding (DPC) techniques. These techniques are used for avoiding dual spatial streams interference and improving the transmitter diversity. The DPC system is interference free on multi-user or multi-antenna. The STBC transceiver can provide the transmit diversity. Due to the benefits about offered by the STBC and DPC techniques, we propose a new scheme called STBC-DPC system. The transceiver design involves the following procedures. First, the ordering QR decomposition of channel matrix and the maximum likelihood (ML) one-dimensional searching algorithm are proposed to acquire reliable performance. Next, the channel on/off assignment using the water filling algorithm, i.e., maximum capacity criterion, is proposed to overcome the deep fading channel problem. Finally, the STBC-DPC system with the modulus operation to limit the transmit signal level, i.e., the Tomlinson-Harashima precoding (THP) scheme, is proposed to achieve low peak-to-average power ratio (PAPR) performance. Simulation results confirm that the proposed STBC-DPC/THP with water filling ML algorithm can provide the low PAPR and excellent bit error rate (BER) performances.

  • Low PAPR Precoding Design with Dynamic Channel Assignment for SCBT Communication Systems

    Juinn-Horng DENG  Sheng-Yang HUANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:11
      Page(s):
    3580-3584

    The single carrier block transmission (SCBT) system has become one of the most popular modulation systems because of its low peak to average power ratio (PAPR). This work proposes precoding design on the transmitter side to retain low PAPR, improve performance, and reduce computational complexity on the receiver side. The system is designed according to the following procedure. First, upper-triangular dirty paper coding (UDPC) is utilized to pre-cancel the interference among multiple streams and provide a one-tap time-domain equalizer for the SCBT system. Next, to solve the problem of the high PAPR of the UDPC precoding system, Tomlinson-Harashima precoding (THP) is developed. Finally, since the UDPC-THP system is degraded by the deep fading channels, the dynamic channel on/off assignment by the maximum capacity algorithm (MCA) and minimum BER algorithm (MBA) is proposed to enhance the bit error rate (BER) performance. Simulation results reveal that the proposed precoding transceiver can provide excellent BER and low PAPR performances for the SCBT system over a multipath fading channel.

  • A Downlink Multi-Relay Transmission Scheme Employing Tomlinson-Harashima Precoding and Interference Alignment

    Heng LIU  Pingzhi FAN  Li HAO  

     
    PAPER-Mobile Information Network

      Vol:
    E95-A No:11
      Page(s):
    1904-1911

    This paper proposes a downlink multi-user transmission scheme for the amplify-and-forward(AF)-based multi-relay cellular network, in which Tomlinson-Harashima precoding(TH precoding) and interference alignment(IA) are jointly applied. The whole process of transmission is divided into two phases: TH precoding is first performed at base-station(BS) to support the multiplexing of data streams transmitted to both mobile-stations(MS) and relay-stations(RS), and then IA is performed at both BS and RSs to achieve the interference-free communication. During the whole process, neither data exchange nor strict synchronization is required among BS and RSs thus reducing the cooperative complexity as well as improving the system performance. Theoretical analysis is provided with respect to the channel capacity of different types of users, resulting the upper-bounds of channel capacity. Our analysis and simulation results show that the joint applications of TH precoding and IA outperforms other schemes in the presented multi-relay cellular network.

  • Successive SLNR Precoding with GMD for Downlink Multi-User Multi-Stream MIMO Systems

    Xun-yong Zhang  Chen HE  Ling-ge JIANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:9
      Page(s):
    1619-1622

    In this paper, we propose a successive signal-to-leakage-plus-noise ratio (SLNR) based precoding with geometric mean decomposition (GMD) for the downlink multi-user multiple-input multiple-output (MU-MIMO) systems. The known leakages are canceled at the transmit side, and SLNR is calculated with the unknown leakages. GMD is applied to cancel the known leakages, so the subchannels for each receiver have equal gain. We further improve the proposed precoding scheme by ordering users. Simulation results show that the proposed schemes have a considerable bit error rate (BER) improvement over the original SLNR scheme.

  • Tight Lower Bounds on Achievable Information Rates for Regularized Tomlinson-Harashima Precoding in Multi-User MIMO Systems

    Bing HUI  Manar MOHAISEN  KyungHi CHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1463-1466

    Tomlinson-Harashima precoding (THP) is considered to be a prominent precoding scheme due to its ability to efficiently cancel out the known interference at the transmitter side. Therefore, the information rates achieved by THP are superior to those achieved by conventional linear precoding schemes. In this paper, new lower bounds on the achievable information rates for the regularized THP scheme are derived. Analytical results show that the lower bounds derived in this paper are tighter than the original lower bounds particularly for the low SNR range, while all lower bounds converge to as SNR ∞.

  • Block Tomlinson-Harashima Precoding with Vector Perturbation for Multiuser MIMO Downlink

    Joondoo KIM  Jiwon KANG  Chungyong LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:1
      Page(s):
    355-358

    We propose a multiuser MIMO precoding algorithm that combines the block Tomlinson-Harashima precoding and the vector perturbation (BTHP-VP). BTHP-VP supports multi-stream transmission without additional estimation of each user's effective channel and achieves full spatial diversity. Computer simulations show that BTHP-VP can achieve similar sum rate and improved BER performance compared to the BTHP with maximum likelihood receiver.

  • Tomlinson-Harashima Precoding for the Downlink of Multiuser MIMO Systems

    Xiao-lin CHE  Chen HE  Wen-feng LIN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    622-627

    In this letter, a Tomlinson-Harashima precoding (THP) scheme is proposed for the downlink of multiuser MIMO systems with multiple antennas at each receiver. Assuming single data stream communication for each user, joint transmitter and receiver design is done to maximize the signal to noise ratio (SNR) for each user. Furthermore, a heuristic user ordering algorithm is proposed to optimize the encoding order and improve the bit error rate (BER) performance. Simulation results have shown that the proposed approach is superior to some existing precoding schemes.

  • Joint Tomlinson-Harashima Precoding and Frequency-Domain Equalization for Broadband Single-Carrier Transmission

    Kazuki TAKEDA  Hiromichi TOMEBA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    258-266

    The performance of single-carrier (SC) transmission in a frequency-selective fading channel degrades due to a severe inter-symbol interference (ISI). Using frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can improve the bit error rate (BER) performance of SC transmission. However, the residual ISI after FDE limits the performance improvement. In this paper, we propose a joint use of Tomlinson-Harashima precoding (THP) and FDE to remove the residual ISI. An approximate conditional BER analysis is presented for the given channel condition. The achievable average BER performance is evaluated by Monte-Carlo numerical computation method using the derived conditional BER. The BER analysis is confirmed by computer simulation of the signal transmission.

  • Receive Antenna Selection for Multiuser MIMO Systems with Tomlinson-Harashima Precoding

    Min HUANG  Xiang CHEN  Yunzhou LI  Shidong ZHOU  Jing WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1852-1856

    In this letter, we discuss the problem of receive antenna selection in the downlink of multiuser multiple-input multiple-output (MIMO) systems with Tomlinson-Harashima precoding (THP), where the number of receivers is assumed equal to that of transmit antennas. Based on the criterion of maximum system sum-capacity, a per-layer receive antenna selection scheme is proposed. This scheme, which selects one receive antenna for each receiver, can well exploit the nonlinear and successive characteristics of THP. Two models are established for the proposed per-layer scheme and the conventional per-user scheme. Both the theoretical analysis and simulation results indicate that the proposed scheme can greatly improve the equivalent channel power gains and the system sum-capacity.

  • Per-Layer Optimization in Multiuser MIMO Systems with Tomlinson-Harashima Precoding

    Min HUANG  Limin XIAO  Yunzhou LI  Shidong ZHOU  Jing WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:6
      Page(s):
    1535-1539

    In this letter, we investigate the application of Tomlinson-Harashima precoding (THP) in the downlink of multiuser multiple-input multiple-output (MIMO) systems, where multiple antennas are located at all the transceivers. Based on the criterion of maximum system sum-capacity, a per-layer optimization scheme is proposed, in which the subchannel ordering and transceiver filters design are generated. In the proposed scheme, the successive character of THP can be fully exploited, so that both the minimum cost of interference suppression and the maximum power and diversity gains can be implemented, and hence, the system sum-capacity can be improved effectively.