The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

701-720hit(22683hit)

  • A Strengthened PAKE Protocol with Identity-Based Encryption

    SeongHan SHIN  

     
    PAPER

      Pubricized:
    2022/06/01
      Vol:
    E105-D No:11
      Page(s):
    1900-1910

    In [2], Choi et al. proposed an identity-based password-authenticated key exchange (iPAKE) protocol using the Boneh-Franklin IBE scheme, and its generic construction (UKAM-PiE) that was standardized in ISO/IEC 11770-4/AMD 1. In this paper, we show that the iPAKE and UKAM-PiE protocols are insecure against passive/active attacks by a malicious PKG (Private Key Generator) where the malicious PKG can find out all clients' passwords by just eavesdropping on the communications, and the PKG can share a session key with any client by impersonating the server. Then, we propose a strengthened PAKE (for short, SPAIBE) protocol with IBE, which prevents such a malicious PKG's passive/active attacks. Also, we formally prove the security of the SPAIBE protocol in the random oracle model and compare relevant PAKE protocols in terms of efficiency, number of passes, and security against a malicious PKG.

  • Operations Smart Contract to Realize Decentralized System Operations Workflow for Consortium Blockchain

    Tatsuya SATO  Taku SHIMOSAWA  Yosuke HIMURA  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1318-1331

    Enterprises have paid attention to consortium blockchains like Hyperledger Fabric, which is one of the most promising platforms, for efficient decentralized transactions without depending on any particular organization. A consortium blockchain-based system will be typically built across multiple organizations. In such blockchain-based systems, system operations across multiple organizations in a decentralized manner are essential to maintain the value of introducing consortium blockchains. Decentralized system operations have recently been becoming realistic with the evolution of consortium blockchains. For instance, the release of Hyperledger Fabric v2.x, in which individual operational tasks for a blockchain network, such as command execution of configuration change of channels (Fabric's sub-networks) and upgrade of chaincodes (Fabric's smart contracts), can be partially executed in a decentralized manner. However, the operations workflows also include the preceding procedure of pre-sharing, coordinating, and pre-agreeing the operational information (e.g., configuration parameters) among organizations, after which operation executions can be conducted, and this preceding procedure relies on costly manual tasks. To realize efficient decentralized operations workflows for consortium blockchain-based systems in general, we propose a decentralized inter-organizational operations method that we call Operations Smart Contract (OpsSC), which defines an operations workflow as a smart contract. Furthermore, we design and implement OpsSC for blockchain network operations with Hyperledger Fabric v2.x. This paper presents OpsSC for operating channels and chaincodes, which are essential for managing the blockchain networks, through clarifying detailed workflows of those operations. A cost evaluation based on an estimation model shows that the total operational cost for executing a typical operational scenario to add an organization to a blockchain network having ten organizations could be reduced by 54 percent compared with a conventional script-based method. The implementation of OpsSC has been open-sourced and registered as one of Hyperledger Labs projects, which hosts experimental projects approved by Hyperledger.

  • Non-Orthogonal Physical Layer (NOPHY) Design towards 5G Evolution and 6G

    Xiaolin HOU  Wenjia LIU  Juan LIU  Xin WANG  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/04/26
      Vol:
    E105-B No:11
      Page(s):
    1444-1457

    5G has achieved large-scale commercialization across the world and the global 6G research and development is accelerating. To support more new use cases, 6G mobile communication systems should satisfy extreme performance requirements far beyond 5G. The physical layer key technologies are the basis of the evolution of mobile communication systems of each generation, among which three key technologies, i.e., duplex, waveform and multiple access, are the iconic characteristics of mobile communication systems of each generation. In this paper, we systematically review the development history and trend of the three key technologies and define the Non-Orthogonal Physical Layer (NOPHY) concept for 6G, including Non-Orthogonal Duplex (NOD), Non-Orthogonal Multiple Access (NOMA) and Non-Orthogonal Waveform (NOW). Firstly, we analyze the necessity and feasibility of NOPHY from the perspective of capacity gain and implementation complexity. Then we discuss the recent progress of NOD, NOMA and NOW, and highlight several candidate technologies and their potential performance gain. Finally, combined with the new trend of 6G, we put forward a unified physical layer design based on NOPHY that well balances performance against flexibility, and point out the possible direction for the research and development of 6G physical layer key technologies.

  • Experimental Study on Synchronization of Van der Pol Oscillator Circuit by Noise Sounds

    Taiki HAYASHI  Kazuyoshi ISHIMURA  Isao T. TOKUDA  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2022/05/16
      Vol:
    E105-A No:11
      Page(s):
    1486-1492

    Towards realization of a noise-induced synchronization in a natural environment, an experimental study is carried out using the Van der Pol oscillator circuit. We focus on acoustic sounds as a potential source of noise that may exist in nature. To mimic such a natural environment, white noise sounds were generated from a loud speaker and recorded into microphone signals. These signals were then injected into the oscillator circuits. We show that the oscillator circuits spontaneously give rise to synchronized dynamics when the microphone signals are highly correlated with each other. As the correlation among the input microphone signals is decreased, the level of synchrony is lowered monotonously, implying that the input correlation is the key determinant for the noise-induced synchronization. Our study provides an experimental basis for synchronizing clocks in distributed sensor networks as well as other engineering devices in natural environment.

  • Generic Construction of 1-out-of-n Oblivious Signatures

    Yu ZHOU  Shengli LIU  Shuai HAN  

     
    INVITED PAPER

      Pubricized:
    2022/07/15
      Vol:
    E105-D No:11
      Page(s):
    1836-1844

    In a 1-out-of-n oblivious signature scheme, a user provides a set of messages to a signer for signatures but he/she can only obtain a valid signature for a specific message chosen from the message set. There are two security requirements for 1-out-of-n oblivious signature. The first is ambiguity, which requires that the signer is not aware which message among the set is signed. The other one is unforgeability which requires that the user is not able to derive any other valid signature for any messages beyond the one that he/she has chosen. In this paper, we provide a generic construction of 1-out-of-n oblivious signature. Our generic construction consists of two building blocks, a commitment scheme and a standard signature scheme. Our construction is round efficient since it only asks one interaction (i.e., two rounds) between the user and signer. Meanwhile, in our construction, the ambiguity of the 1-out-of-n oblivious signature scheme is based on the hiding property of the underlying commitment, while the unforgeability is based on the binding property of the underlying commitment scheme and the unforgeability of the underlying signature scheme. Moreover, our construction can also enjoy strong unforgeability as long as the underlying building blocks have strong binding property and strong unforgeability respectively. Given the fact that commitment and digital signature are well-studied topics in cryptography and numerous concrete schemes have been proposed in the standard model, our generic construction immediately yields a bunch of instantiations in the standard model based on well-known assumptions, including not only traditional assumptions like Decision Diffie-Hellman (DDH), Decision Composite Residue (DCR), etc., but also some post-quantum assumption like Learning with Errors (LWE). As far as we know, our construction admits the first 1-out-of-n oblivious signature schemes based on the standard model.

  • Hardware Implementation of Euclidean Projection Module Based on Simplified LSA for ADMM Decoding

    Yujin ZHENG  Junwei ZHANG  Yan LIN  Qinglin ZHANG  Qiaoqiao XIA  

     
    LETTER-Coding Theory

      Pubricized:
    2022/05/20
      Vol:
    E105-A No:11
      Page(s):
    1508-1512

    The Euclidean projection operation is the most complex and time-consuming of the alternating direction method of multipliers (ADMM) decoding algorithms, resulting in a large number of resources when deployed on hardware platforms. We propose a simplified line segment projection algorithm (SLSA) and present the hardware design and the quantization scheme of the SLSA. In simulation results, the proposed SLSA module has a better performance than the original algorithm with the same fixed bitwidths due to the centrosymmetric structure of SLSA. Furthermore, the proposed SLSA module with a simpler structure without hypercube projection can reduce time consuming by up to 72.2% and reduce hardware resource usage by more than 87% compared to other Euclidean projection modules in the experiments.

  • Intrinsic Representation Mining for Zero-Shot Slot Filling

    Sixia LI  Shogo OKADA  Jianwu DANG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2022/08/19
      Vol:
    E105-D No:11
      Page(s):
    1947-1956

    Zero-shot slot filling is a domain adaptation approach to handle unseen slots in new domains without training instances. Previous studies implemented zero-shot slot filling by predicting both slot entities and slot types. Because of the lack of knowledge about new domains, the existing methods often fail to predict slot entities for new domains as well as cannot effectively predict unseen slot types even when slot entities are correctly identified. Moreover, for some seen slot types, those methods may suffer from the domain shift problem, because the unseen context in new domains may change the explanations of the slots. In this study, we propose intrinsic representations to alleviate the domain shift problems above. Specifically, we propose a multi-relation-based representation to capture both the general and specific characteristics of slot entities, and an ontology-based representation to provide complementary knowledge on the relationships between slots and values across domains, for handling both unseen slot types and unseen contexts. We constructed a two-step pipeline model using the proposed representations to solve the domain shift problem. Experimental results in terms of the F1 score on three large datasets—Snips, SGD, and MultiWOZ 2.3—showed that our model outperformed state-of-the-art baselines by 29.62, 10.38, and 3.89, respectively. The detailed analysis with the average slot F1 score showed that our model improved the prediction by 25.82 for unseen slot types and by 10.51 for seen slot types. The results demonstrated that the proposed intrinsic representations can effectively alleviate the domain shift problem for both unseen slot types and seen slot types with unseen contexts.

  • Doppler Resilient Waveforms Design in MIMO Radar via a Generalized Null Space Method

    Li SHEN  Jiahuan WANG  Wei GUO  Rong LUO  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/05/23
      Vol:
    E105-A No:11
      Page(s):
    1503-1507

    To mitigate the interference caused by range sidelobes in multiple-input multiple-output (MIMO) radar, we propose a new method to construct Doppler resilient complementary waveforms from complete complementary code (CCC). By jointly designing the transmit pulse train and the receive pulse weights, the range sidelobes can vanish within a specified Doppler interval. In addition, the output signal-to-noise ratio (SNR) is maximized subject to the Doppler resilience constraint. Numerical results show that the designed waveforms have better Doppler resilience than the previous works.

  • Proposals and Evaluations of Robotic Attendance at On-Site Network Maintenance Works Open Access

    Takayuki WARABINO  Yusuke SUZUKI  Tomohiro OTANI  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1299-1308

    While the introduction of softwarelization technologies such as software-defined networking and network function virtualization transfers the main focus of network management from hardware to software, network operators still have to deal with various and numerous network and computing equipment located in network centers. Toward fully automated network management, we believe that a robotic approach will be essential, meaning that physical robots will handle network-facility management works on behalf of humans. This paper focuses on robotic assistance for on-site network maintenance works. Currently, for many network operators, some network maintenance works (e.g., hardware check, hardware installation/replacement, high-impact update of software, etc.) are outsourced to computing and network vendors. Attendance (witness work) at the on-site vendor's works is one of the major tasks of network operators. Network operators confirm the work progress for human error prevention and safety improvement. In order to reduce the burden of this, we propose three essential works of robots, namely delegated attendance at on-site meetings, progress check by periodical patrol, and remote monitoring, which support the various forms of attendance. The paper presents our implementation of enabling these forms of support, and reports the results of experiments conducted in a commercial network center.

  • A KPI Anomaly Detection Method Based on Fast Clustering

    Yun WU  Yu SHI  Jieming YANG  Lishan BAO  Chunzhe LI  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1309-1317

    In the Artificial Intelligence for IT Operations scenarios, KPI (Key Performance Indicator) is a very important operation and maintenance monitoring indicator, and research on KPI anomaly detection has also become a hot spot in recent years. Aiming at the problems of low detection efficiency and insufficient representation learning of existing methods, this paper proposes a fast clustering-based KPI anomaly detection method HCE-DWL. This paper firstly adopts the combination of hierarchical agglomerative clustering (HAC) and deep assignment based on CNN-Embedding (CE) to perform cluster analysis (that is HCE) on KPI data, so as to improve the clustering efficiency of KPI data, and then separately the centroid of each KPI cluster and its Transformed Outlier Scores (TOS) are given weights, and finally they are put into the LightGBM model for detection (the Double Weight LightGBM model, referred to as DWL). Through comparative experimental analysis, it is proved that the algorithm can effectively improve the efficiency and accuracy of KPI anomaly detection.

  • Cost-Effective Service Chain Construction with VNF Sharing Model Based on Finite Capacity Queue

    Daisuke AMAYA  Takuji TACHIBANA  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1361-1371

    Service chaining is attracting attention as a promising technology for providing a variety of network services by applying virtual network functions (VNFs) that can be instantiated on commercial off-the-shelf servers. The data transmission for each service chain has to satisfy the quality of service (QoS) requirements in terms of the loss probability and transmission delay, and hence the amount of resources for each VNF is expected to be sufficient for satisfying the QoS. However, the increase in the amount of VNF resources results in a high cost for improving the QoS. To reduce the cost of utilizing a VNF, sharing VNF instances through multiple service chains is an effective approach. However, the number of packets arriving at the VNF instance is increased, resulting in a degradation of the QoS. It is therefore important to select VNF instances shared by multiple service chains and to determine the amount of resources for the selected VNFs. In this paper, we propose a cost-effective service chain construction with a VNF sharing model. In the proposed method, each VNF is modeled as an M/M/1/K queueing model to evaluate the relationship between the amount of resources and the loss probability. The proposed method determines the VNF sharing, the VNF placement, the amount of resources for each VNF, and the transmission route of each service chain. For the optimization problem, these are applied according to our proposed heuristic algorithm. We evaluate the performance of the proposed method through a simulation. From the numerical examples, we show the effectiveness of the proposed method under certain network topologies.

  • Research on Stability of MMC-Based Medium Voltage DC Bus on Ships Based on Lyapunov Method Open Access

    Liang FANG  Xiaoyan XU  Tomasz TARASIUK  

     
    PAPER

      Pubricized:
    2022/05/09
      Vol:
    E105-C No:11
      Page(s):
    675-683

    Modular multilevel converters (MMCs) are an emerging and promising option for medium voltage direct current (MVDC) of all- electric ships. In order to improve the stability of the MVDC transmission system for ships, this paper presents a new control inputs-based Lyapunov strategy based on feedback linearization. Firstly, a set of dynamics equations is proposed based on separating the dynamics of AC-part currents and MMCs circulating currents. The new control inputs can be obtained by the use of feedback linearization theory applied to the dynamic equations. To complete the dynamic parts of the new control inputs from the viewpoint of MVDC system stability, the Lyapunov theory is designed some compensators to demonstrate the effects of the new control inputs on the MMCs state variable errors and its dynamic. In addition, the carrier phase shifted modulation strategy is used because of applying the few number of converter modules to the MVDC system for ships. Moreover, relying on the proposed control strategy, a simulation model is built in MATLAB/SIMULINK software, where simulation results are utilized to verify the validity of proposed control strategy in the MMC-based MVDC system for ships.

  • Block-Based Scheduling Algorithm for Layered Decoding of Block LDPC Codes

    Sangjoon PARK  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/04/28
      Vol:
    E105-B No:11
      Page(s):
    1408-1413

    This paper proposes an efficient scheduling algorithm for the layered decoding of block low-density parity-check (LDPC) codes. To efficiently configure check node-based scheduling groups, the proposed algorithm utilizes the base matrix of the block LDPC code for a block-by-block scheduling group configuration; i.e., the proposed algorithm generates a scheduling group of check nodes, satisfying the weight condition of the layered decoding, which is performed in block units (including several check nodes). Therefore, unlike the conventional scheduling algorithms performed in node units, the proposed algorithm can efficiently generate scheduling groups for layered decoding at low computational complexity and memory requirements. In addition, to accelerate the decoding convergence speed, check nodes are allocated in each scheduling group such that messages from check nodes up to the current group are delivered as evenly as possible to bit nodes. Simulation results confirm that the proposed algorithm can accelerate decoding convergence compared to other block-based scheduling algorithms for layered decoding of block LDPC codes.

  • Voronoi-Based UAV Flight Method for Non-Uniform User Distribution in Delay-Tolerant Aerial Networks

    Hiroyuki ASANO  Hiraku OKADA  Chedlia BEN NAILA  Masaaki KATAYAMA  

     
    PAPER-Network

      Pubricized:
    2022/05/11
      Vol:
    E105-B No:11
      Page(s):
    1414-1423

    This paper considers an emergency communication system controlling multiple unmanned aerial vehicles (UAVs) in the sky over a large-scale disaster-affected area. This system is based on delay-tolerant networking, and information from ground users is relayed by the UAVs through wireless transmission and the movement of UAVs in a store-and-forward manner. Each UAV moves autonomously according to a predetermined flight method, which uses the positions of other UAVs through communication. In this paper, we propose a new method for UAV flight considering the non-uniformity of user distributions. The method is based on the Voronoi cell using the predicted locations of other UAVs. We evaluate the performance of the proposed method through computer simulations with a non-uniform user distribution generated by a general cluster point process. The simulation results demonstrate the effectiveness of the proposed method.

  • Effectiveness of Digital Twin Computing on Path Tracking Control of Unmanned Vehicle by Cloud Server

    Yudai YOSHIMOTO  Taro WATANABE  Ryohei NAKAMURA  Hisaya HADAMA  

     
    PAPER-Internet

      Pubricized:
    2022/05/11
      Vol:
    E105-B No:11
      Page(s):
    1424-1433

    With the rapid deployment of the Internet of Things, where various devices are connected to communication networks, remote driving applications for Unmanned Vehicles (UVs) are attracting attention. In addition to automobiles, autonomous driving technology is expected to be applied to various types of equipment, such as small vehicles equipped with surveillance cameras to monitor building internally and externally, autonomous vehicles that deliver office supplies, and wheelchairs. When a UV is remotely controlled, the control accuracy deteriorates due to transmission delay and jitter. The accuracy must be kept high to realize UV control system by a cloud server. In this study, we investigate the effectiveness of Digital Twin Computing (DTC) for path tracking control of a UV. We show the results of simulations that use transmission delay values measured on the Internet with some cloud servers. Through the results, we quantitatively clarify that application of DTC improves control accuracy on path tracking control. We also clarify that application of jitter buffer, which absorbs the transmission delay fluctuation, can further improve the accuracy.

  • Secondary Ripple Suppression Strategy for a Single-Phase PWM Rectifier Based on Constant Frequency Current Predictive Control

    Hailan ZHOU  Longyun KANG  Xinwei DUAN  Ming ZHAO  

     
    PAPER

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:11
      Page(s):
    667-674

    In the conventional single-phase PWM rectifier, the sinusoidal fluctuating current and voltage on the grid side will generate power ripple with a doubled grid frequency which leads to a secondary ripple in the DC output voltage, and the switching frequency of the conventional model predictive control strategy is not fixed. In order to solve the above two problems, a control strategy for suppressing the secondary ripple based on the three-vector fixed-frequency model predictive current control is proposed. Taking the capacitive energy storage type single-phase PWM rectifier as the research object, the principle of its active filtering is analyzed and a model predictive control strategy is proposed. Simulation and experimental results show that the proposed strategy can significantly reduce the secondary ripple of the DC output voltage, reduce the harmonic content of the input current, and achieve a constant switching frequency.

  • A COM Based High Speed Serial Link Optimization Using Machine Learning Open Access

    Yan WANG  Qingsheng HU  

     
    PAPER

      Pubricized:
    2022/05/09
      Vol:
    E105-C No:11
      Page(s):
    684-691

    This paper presents a channel operating margin (COM) based high-speed serial link optimization using machine learning (ML). COM that is proposed for evaluating serial link is calculated at first and during the calculation several important equalization parameters corresponding to the best configuration are extracted which can be used for the ML modeling of serial link. Then a deep neural network containing hidden layers are investigated to model a whole serial link equalization including transmitter feed forward equalizer (FFE), receiver continuous time linear equalizer (CTLE) and decision feedback equalizer (DFE). By training, validating and testing a lot of samples that meet the COM specification of 400GAUI-8 C2C, an effective ML model is generated and the maximum relative error is only 0.1 compared with computation results. At last 3 link configurations are discussed from the view of tradeoff between the link performance and cost, illustrating that our COM based ML modeling method can be applied to advanced serial link design for NRZ, PAM4 or even other higher level pulse amplitude modulation signal.

  • Analysis of Instantaneous Acoustic Fields Using Fast Inverse Laplace Transform Open Access

    Seiya KISHIMOTO  Naoya ISHIKAWA  Shinichiro OHNUKI  

     
    BRIEF PAPER

      Pubricized:
    2022/03/14
      Vol:
    E105-C No:11
      Page(s):
    700-703

    In this study, a computational method is proposed for acoustic field analysis tasks that require lengthy observation times. The acoustic fields at a given observation time are obtained using a fast inverse Laplace transform with a finite-difference complex-frequency-domain. The transient acoustic field can be evaluated at arbitrary sampling intervals by obtaining the instantaneous acoustic field at the desired observation time using the proposed method.

  • Aggregate Signature Schemes with Traceability of Devices Dynamically Generating Invalid Signatures

    Ryu ISHII  Kyosuke YAMASHITA  Yusuke SAKAI  Tadanori TERUYA  Takahiro MATSUDA  Goichiro HANAOKA  Kanta MATSUURA  Tsutomu MATSUMOTO  

     
    PAPER

      Pubricized:
    2022/08/04
      Vol:
    E105-D No:11
      Page(s):
    1845-1856

    Aggregate signature schemes enable us to aggregate multiple signatures into a single short signature. One of its typical applications is sensor networks, where a large number of users and devices measure their environments, create signatures to ensure the integrity of the measurements, and transmit their signed data. However, if an invalid signature is mixed into aggregation, the aggregate signature becomes invalid, thus if an aggregate signature is invalid, it is necessary to identify the invalid signature. Furthermore, we need to deal with a situation where an invalid sensor generates invalid signatures probabilistically. In this paper, we introduce a model of aggregate signature schemes with interactive tracing functionality that captures such a situation, and define its functional and security requirements and propose aggregate signature schemes that can identify all rogue sensors. More concretely, based on the idea of Dynamic Traitor Tracing, we can trace rogue sensors dynamically and incrementally, and eventually identify all rogue sensors of generating invalid signatures even if the rogue sensors adaptively collude. In addition, the efficiency of our proposed method is also sufficiently practical.

  • Fully Dynamic Data Management in Cloud Storage Systems with Secure Proof of Retrievability

    Nam-Su JHO  Daesung MOON  Taek-Young YOUN  

     
    PAPER

      Pubricized:
    2022/07/19
      Vol:
    E105-D No:11
      Page(s):
    1872-1879

    For reliable storage services, we need a way not only to monitor the state of stored data but also to recover the original data when some data loss is discovered. To solve the problem, a novel technique called HAIL has been proposed. Unfortunately, HAIL cannot support dynamic data which is changed according to users' modification queries. There are many applications where dynamic data are used. So, we need a way to support dynamic data in cloud services to use cloud storage system for various applications. In this paper, we propose a new technique that can support the use of dynamic data in cloud storage systems. For dynamic data update, we design a new data chunk generation strategy which guarantee efficient data insertion, deletion, and modification. Our technique requires O(1) operations for each data update when existing techniques require O(n) operations where n is the size of data.

701-720hit(22683hit)