The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

821-840hit(22683hit)

  • SeCAM: Tightly Accelerate the Image Explanation via Region-Based Segmentation

    Phong X. NGUYEN  Hung Q. CAO  Khang V. T. NGUYEN  Hung NGUYEN  Takehisa YAIRI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/05/11
      Vol:
    E105-D No:8
      Page(s):
    1401-1417

    In recent years, there has been an increasing trend of applying artificial intelligence in many different fields, which has a profound and direct impact on human life. Consequently, this raises the need to understand the principles of model making predictions. Since most current high-precision models are black boxes, neither the AI scientist nor the end-user profoundly understands what is happening inside these models. Therefore, many algorithms are studied to explain AI models, especially those in the image classification problem in computer vision such as LIME, CAM, GradCAM. However, these algorithms still have limitations, such as LIME's long execution time and CAM's confusing interpretation of concreteness and clarity. Therefore, in this paper, we will propose a new method called Segmentation - Class Activation Mapping (SeCAM)/ This method combines the advantages of these algorithms above while at simultaneously overcoming their disadvantages. We tested this algorithm with various models, including ResNet50, InceptionV3, and VGG16 from ImageNet Large Scale Visual Recognition Challenge (ILSVRC) data set. Outstanding results were achieved when the algorithm has met all the requirements for a specific explanation in a remarkably short space of time.

  • Performance Improvement of Radio-Wave Encrypted MIMO Communications Using Average LLR Clipping Open Access

    Mamoru OKUMURA  Keisuke ASANO  Takumi ABE  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/15
      Vol:
    E105-B No:8
      Page(s):
    931-943

    In recent years, there has been significant interest in information-theoretic security techniques that encrypt physical layer signals. We have proposed chaos modulation, which has both physical layer security and channel coding gain, as one such technique. In the chaos modulation method, the channel coding gain can be increased using a turbo mechanism that exchanges the log-likelihood ratio (LLR) with an external concatenated code using the max-log approximation. However, chaos modulation, which is a type of Gaussian modulation, does not use fixed mapping, and the distance between signal points is not constant; therefore, the accuracy of the max-log approximated LLR degrades under poor channel conditions. As a result, conventional methods suffer from performance degradation owing to error propagation in turbo decoding. Therefore, in this paper, we propose a new LLR clipping method that can be optimally applied to chaos modulation by limiting the confidence level of LLR and suppressing error propagation. For effective clipping on chaos modulation that does not have fixed mappings, the average confidence value is obtained from the extrinsic LLR calculated from the demodulator and decoder, and clipping is performed based on this value, either in the demodulator or the decoder. Numerical results indicated that the proposed method achieves the same performance as the one using the exact LLR, which requires complicated calculations. Furthermore, the security feature of the proposed system is evaluated, and we observe that sufficient security is provided.

  • LDPC Codes for Communication Systems: Coding Theoretic Perspective Open Access

    Takayuki NOZAKI  Motohiko ISAKA  

     
    INVITED SURVEY PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/02/10
      Vol:
    E105-B No:8
      Page(s):
    894-905

    Low-density parity-check (LDPC) codes are widely used in communication systems for their high error-correcting performance. This survey introduces the elements of LDPC codes: decoding algorithms, code construction, encoding algorithms, and several classes of LDPC codes.

  • The Effect of Channel Estimation Error on Secrecy Outage Capacity of Dual Selection in the Presence of Multiple Eavesdroppers

    Donghun LEE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/14
      Vol:
    E105-B No:8
      Page(s):
    969-974

    This work investigates the effect of channel estimation error on the average secrecy outage capacity of dual selection in the presence of multiple eavesdroppers. The dual selection selects a transmit antenna of Alice and Bob (i.e., user terminal) which provide the best received signal to noise ratio (SNR) using channel state information from every user terminals. Using Gaussian approximation, this paper obtains the tight analytical expression of the dual selection for the average secrecy outage capacity over channel estimation error and multiple eavesdroppers. Using asymptotic analysis, this work quantifies the high SNR power offset and the high SNR slope for the average secrecy outage capacity at high SNR.

  • Convolutional Neural Networks Based Dictionary Pair Learning for Visual Tracking

    Chenchen MENG  Jun WANG  Chengzhi DENG  Yuanyun WANG  Shengqian WANG  

     
    PAPER-Vision

      Pubricized:
    2022/02/21
      Vol:
    E105-A No:8
      Page(s):
    1147-1156

    Feature representation is a key component of most visual tracking algorithms. It is difficult to deal with complex appearance changes with low-level hand-crafted features due to weak representation capacities of such features. In this paper, we propose a novel tracking algorithm through combining a joint dictionary pair learning with convolutional neural networks (CNN). We utilize CNN model that is trained on ImageNet-Vid to extract target features. The CNN includes three convolutional layers and two fully connected layers. A dictionary pair learning follows the second fully connected layer. The joint dictionary pair is learned upon extracted deep features by the trained CNN model. The temporal variations of target appearances are learned in the dictionary learning. We use the learned dictionaries to encode target candidates. A linear combination of atoms in the learned dictionary is used to represent target candidates. Extensive experimental evaluations on OTB2015 demonstrate the superior performances against SOTA trackers.

  • Bitstream-Quality-Estimation Model for Tile-Based VR Video Streaming Services Open Access

    Masanori KOIKE  Yuichiro URATA  Kazuhisa YAMAGISHI  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2022/02/18
      Vol:
    E105-B No:8
      Page(s):
    1002-1013

    Tile-based virtual reality (VR) video consists of high-resolution tiles that are displayed in accordance with the users' viewing directions and a low-resolution tile that is the entire VR video and displayed when users change their viewing directions. Whether users perceive quality degradation when watching tile-based VR video depends on high-resolution tile size, the quality of high- and low-resolution tiles, and network condition. The display time of low-resolution tile (hereafter delay) affects users' perceived quality because longer delay makes users watch the low-resolution tiles longer. Since these degradations of low-resolution tiles markedly affect users' perceived quality, these points have to be considered in the quality-estimation model. Therefore, we propose a bitstream-quality-estimation model for tile-based VR video streaming services and investigate the effect of bitstream parameters and delay on tile-based VR video quality. Subjective experiments on several videos of different qualities and a comparison between other video quality-estimation models were conducted. In this paper, we prove that the proposed model can improve the quality-estimation accuracy by using the high- and low-resolution tiles' quantization parameters, resolution, framerate, and delay. Subjective experimental results show that the proposed model can estimate the quality of tile-based VR video more accurately than other video quality-estimation models.

  • Blind Signal Separation for Array Radar Measurement Using Mathematical Model of Pulse Wave Propagation Open Access

    Takuya SAKAMOTO  

     
    PAPER-Sensing

      Pubricized:
    2022/02/18
      Vol:
    E105-B No:8
      Page(s):
    981-989

    This paper presents a novel blind signal separation method for the measurement of pulse waves at multiple body positions using an array radar system. The proposed method is based on a mathematical model of pulse wave propagation. The model relies on three factors: (1) a small displacement approximation, (2) beam pattern orthogonality, and (3) an impulse response model of pulse waves. The separation of radar echoes is formulated as an optimization problem, and the associated objective function is established using the mathematical model. We evaluate the performance of the proposed method using measured radar data from participants lying in a prone position. The accuracy of the proposed method, in terms of estimating the body displacements, is measured using reference data taken from laser displacement sensors. The average estimation errors are found to be 10-21% smaller than those of conventional methods. These results indicate the effectiveness of the proposed method for achieving noncontact measurements of the displacements of multiple body positions.

  • Minimal Paths in a Bicube

    Masaaki OKADA  Keiichi KANEKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/04/22
      Vol:
    E105-D No:8
      Page(s):
    1383-1392

    Nowadays, a rapid increase of demand on high-performance computation causes the enthusiastic research activities regarding massively parallel systems. An interconnection network in a massively parallel system interconnects a huge number of processing elements so that they can cooperate to process tasks by communicating among others. By regarding a processing element and a link between a pair of processing elements as a node and an edge, respectively, many problems with respect to communication and/or routing in an interconnection network are reducible to the problems in the graph theory. For interconnection networks of the massively parallel systems, many topologies have been proposed so far. The hypercube is a very popular topology and it has many variants. The bicube is a such topology and it can interconnect the same number of nodes with the same degree as the hypercube while its diameter is almost half of that of the hypercube. In addition, the bicube keeps the node-symmetric property. Hence, we focus on the bicube and propose an algorithm that gives a minimal or shortest path between an arbitrary pair of nodes. We give a proof of correctness of the algorithm and demonstrate its execution.

  • A 0.37mm2 Fully-Integrated Wide Dynamic Range Sub-GHz Receiver Front-End without Off-Chip Matching Components

    Yuncheng ZHANG  Bangan LIU  Teruki SOMEYA  Rui WU  Junjun QIU  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER

      Pubricized:
    2022/01/20
      Vol:
    E105-C No:7
      Page(s):
    334-342

    This paper presents a fully integrated yet compact receiver front-end for Sub-GHz applications such as Internet-of-Things (IoT). The low noise amplifier (LNA) matching network leverages an inductance boosting technique. A relatively small on-chip inductor with a compact area achieves impedance matching in such a low frequency. Moreover, a passive-mixer-first mode bypasses the LNA to extend the receiver dynamic-range. The passive mixer provides matching to the 50Ω antenna interface to eliminate the need for additional passive components. Therefore, the receiver can be fully-integrated without any off-chip matching components. The flipped-voltage-follower (FVF) cell is adopted in the low pass filter (LPF) and the variable gain amplifier (VGA) for its high linearity and low power consumption. Fabricated in 65nm LP CMOS process, the proposed receiver front-end occupies 0.37mm2 core area, with a tolerable input power ranging from -91.5dBm to -1dBm for 500kbps GMSK signal at 924MHz frequency. The power consumption is 1mW power under a 1.2V supply.

  • Linear Complexity of a Class of Quaternary Sequences with Optimal Autocorrelation

    Lu ZHAO  Bo XU  Tianqing CAO  Jiao DU  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/01/13
      Vol:
    E105-A No:7
      Page(s):
    1070-1081

    A unified construction for yielding optimal and balanced quaternary sequences from ideal/optimal balanced binary sequences was proposed by Zeng et al. In this paper, the linear complexity over finite field 𝔽2, 𝔽4 and Galois ring ℤ4 of the quaternary sequences are discussed, respectively. The exact values of linear complexity of sequences obtained by Legendre sequence pair, twin-prime sequence pair and Hall's sextic sequence pair are derived.

  • Temporal Ensemble SSDLite: Exploiting Temporal Correlation in Video for Accurate Object Detection

    Lukas NAKAMURA  Hiromitsu AWANO  

     
    PAPER-Vision

      Pubricized:
    2022/01/18
      Vol:
    E105-A No:7
      Page(s):
    1082-1090

    We propose “Temporal Ensemble SSDLite,” a new method for video object detection that boosts accuracy while maintaining detection speed and energy consumption. Object detection for video is becoming increasingly important as a core part of applications in robotics, autonomous driving and many other promising fields. Many of these applications require high accuracy and speed to be viable, but are used in compute and energy restricted environments. Therefore, new methods that increase the overall performance of video object detection i.e., accuracy and speed have to be developed. To increase accuracy we use ensemble, the machine learning method of combining predictions of multiple different models. The drawback of ensemble is the increased computational cost which is proportional to the number of models used. We overcome this deficit by deploying our ensemble temporally, meaning we inference with only a single model at each frame, cycling through our ensemble of models at each frame. Then, we combine the predictions for the last N frames where N is the number of models in our ensemble through non-max-suppression. This is possible because close frames in a video are extremely similar due to temporal correlation. As a result, we increase accuracy through the ensemble while only inferencing a single model at each frame and therefore keeping the detection speed. To evaluate the proposal, we measure the accuracy, detection speed and energy consumption on the Google Edge TPU, a machine learning inference accelerator, with the Imagenet VID dataset. Our results demonstrate an accuracy boost of up to 4.9% while maintaining real-time detection speed and an energy consumption of 181mJ per image.

  • Backup Resource Allocation of Virtual Machines for Probabilistic Protection under Capacity Uncertainty

    Mitsuki ITO  Fujun HE  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2022/01/17
      Vol:
    E105-B No:7
      Page(s):
    814-832

    This paper presents robust optimization models for minimizing the required backup capacity while providing probabilistic protection against multiple simultaneous failures of physical machines under uncertain virtual machine capacities in a cloud provider. If random failures occur, the required capacities for virtual machines are allocated to the dedicated backup physical machines, which are determined in advance. We consider two uncertainties: failure event and virtual machine capacity. By adopting a robust optimization technique, we formulate six mixed integer linear programming problems. Numerical results show that for a small size problem, our presented models are applicable to the case that virtual machine capacities are uncertain, and by using these models, we can obtain the optimal solution of the allocation of virtual machines under the uncertainty. A simulated annealing heuristic is presented to solve large size problems. By using this heuristic, an approximate solution is obtained for a large size problem.

  • Performance Evaluation of a Hash-Based Countermeasure against Fake Message Attacks in Sparse Mobile Ad Hoc Networks

    Yuki SHIMIZU  Tomotaka KIMURA  Jun CHENG  

     
    PAPER-Network

      Pubricized:
    2021/12/24
      Vol:
    E105-B No:7
      Page(s):
    833-847

    In this study, we consider fake message attacks in sparse mobile ad hoc networks, in which nodes are chronically isolated. In these networks, messages are delivered to their destination nodes using store-carry-forward routing, where they are relayed by some nodes. Therefore, when a node has messages in its buffer, it can falsify the messages easily. When malicious nodes exist in the network, they alter messages to create fake messages, and then they launch fake message attacks, that is, the fake messages are spread over the network. To analyze the negative effects of a fake message attack, we model the system dynamics without attack countermeasures using a Markov chain, and then formalize some performance metrics (i.e., the delivery probability, mean delivery delay, and mean number of forwarded messages). This analysis is useful for designing countermeasures. Moreover, we consider a hash-based countermeasure against fake message attacks using a hash of the message. Whenever a node that has a message and its hash encounters another node, it probabilistically forwards only one of them to the encountered node. By doing this, the message and the hash value can be delivered to the destination node via different relay nodes. Therefore, even if the destination node receives a fake message, it can verify the legitimacy of the received message. Through simulation experiments, we evaluate the effectiveness of the hash-based countermeasure.

  • Improved Optimal Configuration for Reducing Mutual Coupling in a Two-Level Nested Array with an Even Number of Sensors

    Weichuang YU  Peiyu HE  Fan PAN  Ao CUI  Zili XU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/12/29
      Vol:
    E105-B No:7
      Page(s):
    856-865

    To reduce mutual coupling of a two-level nested array (TLNA) with an even number of sensors, we propose an improved array configuration that exhibits all the good properties of the prototype optimal configuration under the constraint of a fixed number of sensors N and achieves reduction of mutual coupling. Compared with the prototype optimal TLNA (POTLNA), which inner level and outer level both have N/2 sensors, those of the improved optimal TLNA (IOTLNA) are N/2-1 and N/2+1. It is proved that the physical aperture and uniform degrees of freedom (uDOFs) of IOTLNA are the same as those of POTLNA, and the number of sensor pairs with small separations of IOTLNA is reduced. We also construct an improved optimal second-order super nested array (SNA) by using the IOTLNA as the parent nested array, termed IOTLNA-SNA, which has the same physical aperture and the same uDOFs, as well as the IOTLNA. Numerical simulations demonstrate the better performance of the improved array configurations.

  • Detection and Tracking Method for Dynamic Barcodes Based on a Siamese Network

    Menglong WU  Cuizhu QIN  Hongxia DONG  Wenkai LIU  Xiaodong NIE  Xichang CAI  Yundong LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/01/13
      Vol:
    E105-B No:7
      Page(s):
    866-875

    In many screen to camera communication (S2C) systems, the barcode preprocessing method is a significant prerequisite because barcodes may be deformed due to various environmental factors. However, previous studies have focused on barcode detection under static conditions; to date, few studies have been carried out on dynamic conditions (for example, the barcode video stream or the transmitter and receiver are moving). Therefore, we present a detection and tracking method for dynamic barcodes based on a Siamese network. The backbone of the CNN in the Siamese network is improved by SE-ResNet. The detection accuracy achieved 89.5%, which stands out from other classical detection networks. The EAO reaches 0.384, which is better than previous tracking methods. It is also superior to other methods in terms of accuracy and robustness. The SE-ResNet in this paper improved the EAO by 1.3% compared with ResNet in SiamMask. Also, our method is not only applicable to static barcodes but also allows real-time tracking and segmentation of barcodes captured in dynamic situations.

  • Reconfiguring k-Path Vertex Covers

    Duc A. HOANG  Akira SUZUKI  Tsuyoshi YAGITA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/04/12
      Vol:
    E105-D No:7
      Page(s):
    1258-1272

    A vertex subset I of a graph G is called a k-path vertex cover if every path on k vertices in G contains at least one vertex from I. The K-PATH VERTEX COVER RECONFIGURATION (K-PVCR) problem asks if one can transform one k-path vertex cover into another via a sequence of k-path vertex covers where each intermediate member is obtained from its predecessor by applying a given reconfiguration rule exactly once. We investigate the computational complexity of K-PVCR from the viewpoint of graph classes under the well-known reconfiguration rules: TS, TJ, and TAR. The problem for k=2, known as the VERTEX COVER RECONFIGURATION (VCR) problem, has been well-studied in the literature. We show that certain known hardness results for VCR on different graph classes can be extended for K-PVCR. In particular, we prove a complexity dichotomy for K-PVCR on general graphs: on those whose maximum degree is three (and even planar), the problem is PSPACE-complete, while on those whose maximum degree is two (i.e., paths and cycles), the problem can be solved in polynomial time. Additionally, we also design polynomial-time algorithms for K-PVCR on trees under each of TJ and TAR. Moreover, on paths, cycles, and trees, we describe how one can construct a reconfiguration sequence between two given k-path vertex covers in a yes-instance. In particular, on paths, our constructed reconfiguration sequence is shortest.

  • A Hybrid Bayesian-Convolutional Neural Network for Adversarial Robustness

    Thi Thu Thao KHONG  Takashi NAKADA  Yasuhiko NAKASHIMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/04/11
      Vol:
    E105-D No:7
      Page(s):
    1308-1319

    We introduce a hybrid Bayesian-convolutional neural network (hyBCNN) for improving the robustness against adversarial attacks and decreasing the computation time in the Bayesian inference phase. Our hyBCNN models are built from a part of BNN and CNN. Based on pre-trained CNNs, we only replace convolutional layers and activation function of the initial stage of CNNs with our Bayesian convolutional (BC) and Bayesian activation (BA) layers as a term of transfer learning. We keep the remainder of CNNs unchanged. We adopt the Bayes without Bayesian Learning (BwoBL) algorithm for hyBCNN networks to execute Bayesian inference towards adversarial robustness. Our proposal outperforms adversarial training and robust activation function, which are currently the outstanding defense methods of CNNs in the resistance to adversarial attacks such as PGD and C&W. Moreover, the proposed architecture with BwoBL can easily integrate into any pre-trained CNN, especially in scaling networks, e.g., ResNet and EfficientNet, with better performance on large-scale datasets. In particular, under l∞ norm PGD attack of pixel perturbation ε=4/255 with 100 iterations on ImageNet, our best hyBCNN EfficientNet reaches 93.92% top-5 accuracy without additional training.

  • PRIGM: Partial-Regression-Integrated Generic Model for Synthetic Benchmarks Robust to Sensor Characteristics

    Kyungmin KIM  Jiung SONG  Jong Wook KWAK  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2022/04/04
      Vol:
    E105-D No:7
      Page(s):
    1330-1334

    We propose a novel synthetic-benchmarks generation model using partial time-series regression, called Partial-Regression-Integrated Generic Model (PRIGM). PRIGM abstracts the unique characteristics of the input sensor data into generic time-series data confirming the generation similarity and evaluating the correctness of the synthetic benchmarks. The experimental results obtained by the proposed model with its formula verify that PRIGM preserves the time-series characteristics of empirical data in complex time-series data within 10.4% on an average difference in terms of descriptive statistics accuracy.

  • Gray Augmentation Exploration with All-Modality Center-Triplet Loss for Visible-Infrared Person Re-Identification

    Xiaozhou CHENG  Rui LI  Yanjing SUN  Yu ZHOU  Kaiwen DONG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2022/04/06
      Vol:
    E105-D No:7
      Page(s):
    1356-1360

    Visible-Infrared Person Re-identification (VI-ReID) is a challenging pedestrian retrieval task due to the huge modality discrepancy and appearance discrepancy. To address this tough task, this letter proposes a novel gray augmentation exploration (GAE) method to increase the diversity of training data and seek the best ratio of gray augmentation for learning a more focused model. Additionally, we also propose a strong all-modality center-triplet (AMCT) loss to push the features extracted from the same pedestrian more compact but those from different persons more separate. Experiments conducted on the public dataset SYSU-MM01 demonstrate the superiority of the proposed method in the VI-ReID task.

  • Measurement of Complex Waveforms in Wide Wavelength Range by Using Wavelength-Swept Light Source and Linear Optical Sampling

    Sougo SHIMIZU  Chao ZHANG  Fumihiko ITO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2021/12/28
      Vol:
    E105-B No:7
      Page(s):
    797-804

    This paper describes a method to evaluate the modulated waveforms output by a high-speed external phase modulator over a wide wavelength range by using linear optical sampling (LOS) and a wavelength-swept light source. The phase-modulated waveform is sampled by LOS together with the reference signal before modulation, and the modulation waveform is observed by removing the phase noise of the light source extracted from the reference signal. In this process, the frequency offset caused by the optical-path length difference between the measurement and reference interferometers is removed by digital signal processing. A pseudo-random binary-sequence modulated signal is observed with a temporal resolution of 10ps. We obtained a dynamic range of ∼40dB for the measurement bandwidth of 10 nm. When the measurement bandwidth is expanded to entire C-Band (∼35nm), the dynamic ranges of 37∼46dB were observed, depending on the wavelengths. The measurement time was sub-seconds throughout the experiment.

821-840hit(22683hit)