The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

741-760hit(22683hit)

  • Antenna Array Self-Calibration Algorithm with Location Errors for MUSIC

    Jian BAI  Lin LIU  Xiaoyang ZHANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/04/20
      Vol:
    E105-A No:10
      Page(s):
    1421-1424

    The characteristics of antenna array, like sensor location, gain and phase response are rarely perfectly known in realistic situations. Location errors usually have a serious impact on the DOA (direction of arrival) estimation. In this paper, a novel array location calibration method of MUSIC (multiple signal classification) algorithm based on the virtual interpolated array is proposed. First, the paper introduces the antenna array positioning scheme. Then, the self-calibration algorithm of FIR-Winner filter based on virtual interpolation array is derived, and its application restriction are also analyzed. Finally, by simulating the different location errors of antenna array, the effectiveness of the proposed method is validated.

  • Design and Experimental Verification of a 2.1nW 0.018mm2 Slope ADC-Based Supply Voltage Monitor for Biofuel-Cell-Powered Supply-Sensing Systems in 180-nm CMOS

    Guowei CHEN  Xujiaming CHEN  Kiichi NIITSU  

     
    BRIEF PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    565-570

    This brief presents a slope analog-digital converter (ADC)-based supply voltage monitor (SVM) for biofuel-cell-powered supply-sensing systems operating in a supply voltage range of 0.18-0.35V. The proposed SVM is designed to utilize the output of energy harvester extracting power from biological reactions, realizing energy-autonomous sensor interfaces. A burst pulse generator uses a dynamic leakage suppression logic oscillator to generate a stable clock signal under the sub-threshold region for pulse counting. A slope-based voltage-to-time converter is employed to generate a pulse width proportional to the supply voltage with high linearity. The test chip of the proposed SVM is implemented in 180-nm CMOS technology with an active area of 0.018mm2. It consumes 2.1nW at 0.3V and achieves a conversion time of 117-673ms at 0.18-0.35V with a nonlinearity error of -5.5/+8.3mV, achieving an energy-efficient biosensing frontend.

  • Admittance Spectroscopy Up to 67 GHz in InGaAs/InAlAs Triple-Barrier Resonant Tunneling Diodes

    Kotaro AIKAWA  Michihiko SUHARA  Takumi KIMURA  Junki WAKAYAMA  Takeshi MAKINO  Katsuhiro USUI  Kiyoto ASAKAWA  Kouichi AKAHANE  Issei WATANABE  

     
    BRIEF PAPER

      Pubricized:
    2022/06/30
      Vol:
    E105-C No:10
      Page(s):
    622-626

    S-parameters of InGaAs/InAlAs triple-barrier resonant tunneling diodes (TBRTDs) were measured up to 67 GHz with various mesa areas and various bias voltages. Admittance data of bare TBRTDs are deembedded and evaluated by getting rid of parasitic components with help of electromagnetic simulations for particular fabricated device structures. Admittance spectroscopy up to 67 GHz is applied for bare TBRTDs for the first time and a Kramers-Kronig relation with Lorentzian function is found to be a consistent model for the admittance especially in cases of low bias conditions. Relaxation time included in the Lorentzian function are tentatively evaluated as the order of several pico second.

  • New Family of Polyphase Sequences with Low Correlation from Galois Rings

    Linyan YU  Pinhui KE  Zuling CHANG  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2022/04/20
      Vol:
    E105-A No:10
      Page(s):
    1425-1428

    In this letter, we give a new construction of a family of sequences of period pk-1 with low correlation value by using additive and multiplicative characters over Galois rings. The new constructed sequence family has family size (M-1)(pk-1)rpkr(e-1) and alphabet size Mpe. Based on the characters sum over Galois rings, an upper bound on the correlation of this sequence family is presented.

  • Sample Selection Approach with Number of False Predictions for Learning with Noisy Labels

    Yuichiro NOMURA  Takio KURITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/07/21
      Vol:
    E105-D No:10
      Page(s):
    1759-1768

    In recent years, deep neural networks (DNNs) have made a significant impact on a variety of research fields and applications. One drawback of DNNs is that it requires a huge amount of dataset for training. Since it is very expensive to ask experts to label the data, many non-expert data collection methods such as web crawling have been proposed. However, dataset created by non-experts often contain corrupted labels, and DNNs trained on such dataset are unreliable. Since DNNs have an enormous number of parameters, it tends to overfit to noisy labels, resulting in poor generalization performance. This problem is called Learning with Noisy labels (LNL). Recent studies showed that DNNs are robust to the noisy labels in the early stage of learning before over-fitting to noisy labels because DNNs learn the simple patterns first. Therefore DNNs tend to output true labels for samples with noisy labels in the early stage of learning, and the number of false predictions for samples with noisy labels is higher than for samples with clean labels. Based on these observations, we propose a new sample selection approach for LNL using the number of false predictions. Our method periodically collects the records of false predictions during training, and select samples with a low number of false predictions from the recent records. Then our method iteratively performs sample selection and training a DNNs model using the updated dataset. Since the model is trained with more clean samples and records more accurate false predictions for sample selection, the generalization performance of the model gradually increases. We evaluated our method on two benchmark datasets, CIFAR-10 and CIFAR-100 with synthetically generated noisy labels, and the obtained results which are better than or comparative to the-state-of-the-art approaches.

  • Multi-Port Amplifier with Enhanced Linearity and Isolation Employing Feed-Forward Techniques

    Yasunori SUZUKI  Tetsuo HIROTA  Toshio NOJIMA  

     
    PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    501-508

    This paper proposes a new multi-port amplifier configuration that employs feed-forward techniques. In general, a multi-port amplifier is used as a transponder in a satellite transmitter. A multi-port amplifier comprises an N-in N-out input-side matrix network, N amplifiers, and an N-in N-out output-side matrix network. Based on this configuration, other undesired ports leak power to the desired port in a multi-port amplifier. If the power amplifier of a cellular base station uses a multi-port amplifier, the power leakage from the other ports causes degradation in the error vector magnitude. The proposed configuration employs N-parallel feed-forward amplifiers with a multi-port amplifier as the main amplifier. The proposed configuration drastically reduces the power leakage using the employed feed-forward techniques. An experimental 2-GHz band four-in four-out multi-port amplifier is constructed and tested. It achieves the leakage power level of -58 dB, a gain deviation of less than 0.05 dB, and a phase deviation of less than 0.45 deg. with the maximum power of 35 dBm over a 20-MHz bandwidth with the center frequency 2.14 GHz at room temperature. The experimental multi-port amplifier reduces the leakage power level by approximately 30 dB compared to that for a multi-port amplifier without the feed-forward techniques. The proposed configuration can be applied to power amplifiers in cellular base stations.

  • An 8.5-dB Insertion Loss and 0.8° RMS Phase Error Ka-Band CMOS Hybrid Phase Shifter Featuring Nonuniform Matching for Satellite Communication

    Xi FU  Yun WANG  Xiaolin WANG  Xiaofan GU  Xueting LUO  Zheng LI  Jian PANG  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    552-560

    This paper presents a high-resolution and low-insertion-loss CMOS hybrid phase shifter with a nonuniform matching technique for satellite communication (SATCOM). The proposed hybrid phase shifter includes three 45° coarse phase-shifting stages and one 45° fine phase-tuning stage. The coarse stages are realized by bridged-T switch-type phase shifters (STPS) with 45° phase steps. The fine-tuning stage is based on a reflective-type phase shifter (RTPS) with two identical LC load tanks for phase tuning. A 0.8° phase resolution is realized by this work to support fine beam steering for the SATCOM. To further reduce the chain insertion loss, a nonuniform matching technique is utilized at the coarse stages. For the coarse and fine stages, the measured RMS gain errors at 29GHz are 0.7dB and 0.3dB, respectively. The measured RMS phase errors are 0.8° and 0.4°, respectively. The proposed hybrid phase shifter maintains return losses of all phase states less than -12dB from 24GHz to 34GHz. The presented hybrid phase shifter is fabricated in a standard 65-nm CMOS technology with a 0.14mm2 active area.

  • Pattern Synthesis of Spatial Eigenmodes Exploiting Spherical Conformal Array Open Access

    Akira SAITOU  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1231-1239

    Unique spatial eigenmodes for the spherical coordinate system are shown to be successfully synthesized by properly allocated combinations of current distributions along θ' and φ' on a spherical conformal array. The allocation ratios are analytically found in a closed form with a matrix that relates the expansion coefficients of the current to its radiated field. The coefficients are obtained by general Fourier expansion of the current and the mode expansion of the field, respectively. The validity of the obtained formulas is numerically confirmed, and important effects of the sphere radius and the degrees of the currents on the radiated fields are numerically explained. The formulas are used to design six current distributions that synthesize six unique eigenmodes. The accuracy of the synthesized fields is quantitatively investigated, and the accuracy is shown to be remarkably improved by more than 27dB with two additional kinds of current distributions.

  • Unrolled Network for Light Field Display

    Kotaro MATSUURA  Chihiro TSUTAKE  Keita TAKAHASHI  Toshiaki FUJII  

     
    LETTER

      Pubricized:
    2022/05/06
      Vol:
    E105-D No:10
      Page(s):
    1721-1725

    Inspired by the framework of algorithm unrolling, we propose a scalable network architecture that computes layer patterns for light field displays, enabling control of the trade-off between the display quality and the computational cost on a single pre-trained network.

  • Sub-Terahertz MIMO Spatial Multiplexing in Indoor Propagation Environments Open Access

    Yasutaka OGAWA  Taichi UTSUNO  Toshihiko NISHIMURA  Takeo OHGANE  Takanori SATO  

     
    INVITED PAPER

      Pubricized:
    2022/04/18
      Vol:
    E105-B No:10
      Page(s):
    1130-1138

    A sub-Terahertz band is envisioned to play a great role in 6G to achieve extreme high data-rate communication. In addition to very wide band transmission, we need spatial multiplexing using a hybrid MIMO system. A recently presented paper, however, reveals that the number of observed multipath components in a sub-Terahertz band is very few in indoor environments. A channel with few multipath components is called sparse. The number of layers (streams), i.e. multiplexing gain in a MIMO system does not exceed the number of multipaths. The sparsity may restrict the spatial multiplexing gain of sub-Terahertz systems, and the poor multiplexing gain may limit the data rate of communication systems. This paper describes fundamental considerations on sub-Terahertz MIMO spatial multiplexing in indoor environments. We examined how we should steer analog beams to multipath components to achieve higher channel capacity. Furthermore, for different beam allocation schemes, we investigated eigenvalue distributions of a channel Gram matrix, power allocation to each layer, and correlations between analog beams. Through simulation results, we have revealed that the analog beams should be steered to all the multipath components to lower correlations and to achieve higher channel capacity.

  • A Survey on Research Activities for Deploying Cell Free Massive MIMO towards Beyond 5G Open Access

    Issei KANNO  Kosuke YAMAZAKI  Yoji KISHI  Satoshi KONISHI  

     
    INVITED PAPER

      Pubricized:
    2022/04/28
      Vol:
    E105-B No:10
      Page(s):
    1107-1116

    5G service has been launched in various countries, and research for the beyond 5G is already underway actively around the world. In beyond 5G, it is expected to expand the various capabilities of communication technologies to cover further wide use cases from 5G. As a candidate elemental technology, cell free massive MIMO has been widely researched and shown its potential to enhance the capabilities from various aspects. However, for deploying this technology in reality, there are still many technical issues such as a cost of distributing antenna and installing fronthaul, and also the scalability aspects. This paper surveys research trends of cell free massive MIMO, especially focusing on the deployment challenges with an introduction to our specific related research activities including some numerical examples.

  • Link Design and Techniques of Microwave Power Transfer for Latest Power Utilization Systems on Beyond-5G/6G Open Access

    Naoki HASEGAWA  

     
    INVITED PAPER

      Pubricized:
    2022/07/19
      Vol:
    E105-C No:10
      Page(s):
    474-482

    The expansion of the communication area is expected for Beyond-5G/6G networks using the High Altitude Platform Station (HAPS), Internet of Things (IoT), and sensor devices. Beyond-5G/6G networks constitute the vast amounts of devices that require the latest power utilization system. We expect Microwave Power Transfer (MPT) plays a role in the wireless power supply to HAPS, IoT, and sensors in this network. This work discusses the link design and techniques of MPT for the newest power utilization system required on Beyond-5G/6G networks.

  • End-to-End Object Separation for Threat Detection in Large-Scale X-Ray Security Images

    Joanna Kazzandra DUMAGPI  Yong-Jin JEONG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/07/25
      Vol:
    E105-D No:10
      Page(s):
    1807-1811

    Fine-grained image analysis, such as pixel-level approaches, improves threat detection in x-ray security images. In the practical setting, the cost of obtaining complete pixel-level annotations increases significantly, which can be reduced by partially labeling the dataset. However, handling partially labeled datasets can lead to training complicated multi-stage networks. In this paper, we propose a new end-to-end object separation framework that trains a single network on a partially labeled dataset while also alleviating the inherent class imbalance at the data and object proposal level. Empirical results demonstrate significant improvement over existing approaches.

  • Communication Quality Estimation Observer: An Approach for Integrated Communication Quality Estimation and Control for Digital-Twin-Assisted Cyber-Physical Systems Open Access

    Ryogo KUBO  

     
    INVITED PAPER

      Pubricized:
    2022/04/14
      Vol:
    E105-B No:10
      Page(s):
    1139-1153

    Cyber-physical systems (CPSs) assisted by digital twins (DTs) integrate sensing-actuation loops over communication networks in various infrastructure services and applications. This study overviews the concept, methodology, and applications of the integrated communication quality estimation and control for the DT-assisted CPSs from both communications and control perspectives. The DT-assisted CPSs can be considered as networked control systems (NCSs) with virtual dynamic models of physical entities. A communication quality estimation observer (CQEO), which is an extended version of the communication disturbance observer (CDOB) utilized for time-delay compensation in NCSs, is proposed to estimate the integrated effects of the quality of services (QoS) and cyberattacks on the NCS applications. A path diversity technique with the CQEO is also proposed to achieve reliable NCSs. The proposed technique is applied to two kinds of NCSs: remote motor control and haptic communication systems. Moreover, results of the simulation on a haptic communication system show the effectiveness of the proposed approach. In the end, future research directions of the CQEO-based scheme are presented.

  • Asynchronous NOMA Downlink Based on Single-Carrier Frequency-Domain Equalization

    Tomonari KURAYAMA  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1173-1180

    Non-orthogonal multiple access (NOMA) allows several users to multiplex in the power-domain to improve spectral efficiency. To further improve its performance, it is desirable to reduce inter-user interference (IUI). In this paper, we propose a downlink asynchronous NOMA (ANOMA) scheme applicable to frequency-selective channels. The proposed scheme introduces an intentional symbol offset between the multiplexed signals to reduce IUI, and it employs cyclic-prefixed single-carrier transmission with frequency-domain equalization (FDE) to reduce inter-symbol interference. We show that the mean square error for the FDE of the proposed ANOMA scheme is smaller than that of a conventional NOMA scheme. Simulation results show that the proposed ANOMA with appropriate power allocation achieves a better sum rate compared to the conventional NOMA.

  • Low-Complexity Hybrid Precoding Based on PAST for Millimeter Wave Massive MIMO System Open Access

    Rui JIANG  Xiao ZHOU  You Yun XU  Li ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/04/21
      Vol:
    E105-B No:10
      Page(s):
    1192-1201

    Millimeter wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems generally adopt hybrid precoding combining digital and analog precoder as an alternative to full digital precoding to reduce RF chains and energy consumption. In order to balance the relationship between spectral efficiency, energy efficiency and hardware complexity, the hybrid-connected system structure should be adopted, and then the solution process of hybrid precoding can be simplified by decomposing the total achievable rate into several sub-rates. However, the singular value decomposition (SVD) incurs high complexity in calculating the optimal unconstrained hybrid precoder for each sub-rate. Therefore, this paper proposes PAST, a low complexity hybrid precoding algorithm based on projection approximate subspace tracking. The optimal unconstrained hybrid precoder of each sub-rate is estimated with the PAST algorithm, which avoids the high complexity process of calculating the left and right singular vectors and singular value matrix by SVD. Simulations demonstrate that PAST matches the spectral efficiency of SVD-based hybrid precoding in full-connected (FC), hybrid-connected (HC) and sub-connected (SC) system structure. Moreover, the superiority of PAST over SVD-based hybrid precoding in terms of complexity and increases with the number of transmitting antennas.

  • Non-Destructive Inspection of Twisted Wire in Resin Cover Using Terahertz Wave Open Access

    Masaki NAKAMORI  Yukihiro GOTO  Tomoya SHIMIZU  Nazuki HONDA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2022/04/13
      Vol:
    E105-B No:10
      Page(s):
    1202-1208

    We proposed a new method for evaluating the deterioration of messenger wires by using terahertz waves. We use terahertz time-domain spectroscopy to measure several twisted wire samples with different levels of deterioration. We find that each twisted wire sample had a different distribution of reflection intensity which was due to the wires' twist structure. We show that it is possible to assess the degradation from the straight lines present in the reflection intensity distribution image. Furthermore, it was confirmed that our method can be applied to wire covered with resin.

  • Evolution of Power Amplifiers for Mobile Phone Terminals from the 2nd Generation to the 5th Generation Open Access

    Satoshi TANAKA  Kenji MUKAI  Shohei IMAI  Hiroshi OKABE  

     
    INVITED PAPER

      Pubricized:
    2022/03/22
      Vol:
    E105-C No:10
      Page(s):
    421-432

    Mobile phone systems continue to evolve from the 2nd generation, which began in the early 1990s, to the 5th generation, which is now in service. Along with this evolution, the power amplifier (PA) is also evolved. The characteristics required for PA are changing with each generation. In this paper, we will give an overview of the evolution of PAs from the 2nd generation mobile phones such as GSM (global system for mobile communications) to the 5th generation mobile phones that is often called NR (new radio), in particular, the circuit system. Specifically, the following five items will be described. (1) Ramp-up and ramp-down power control circuit corresponding to GSM, (2) Self-bias circuit technology for improving linearity that becomes important after W-CDMA (wideband code division multiple access), (3) Power mode switching methods for improving efficiency at low output power, (4) Power combining methods that have become important since LTE (long term evolution), and (5) Backoff efficiency improvement methods represented by ET (envelop tracking) and Doherty PA.

  • Class-E Power Amplifier with Improved PAE Bandwidth Using Double CRLH TL Stub for Harmonic Tuning Open Access

    Shinichi TANAKA  Hirotaka ASAMI  Takahiro SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    441-448

    This paper presents a class-E power amplifier (PA) with a novel harmonic tuning circuit (HTC) based on composite right-/left-handed transmission lines (CRLH TLs). One of the issues of conventional harmonically tuned PAs is the limited PAE bandwidth. It is shown by simulation that class-E amplifiers have potential of maintaining high PAE over a wider frequency range than for example class-F amplifiers. To make full use of class-E amplifiers with the superior characteristics, an HTC using double CRLH TL stub structure is proposed. The HTC is not only compact but also enhances the inherently wide operation frequency range of class-E amplifier. A 2-GHz 6W GaN-HEMT class-E PA using the proposed HTC demonstrated a PAE bandwidth (≥65%) of 380MHz with maximum drain efficiency and PAE of 78.5% and 74.0%, respectively.

  • AlGaN/GaN HEMT on 3C-SiC/Low-Resistivity Si Substrate for Microwave Applications Open Access

    Akio WAKEJIMA  Arijit BOSE  Debaleen BISWAS  Shigeomi HISHIKI  Sumito OUCHI  Koichi KITAHARA  Keisuke KAWAMURA  

     
    INVITED PAPER

      Pubricized:
    2022/04/21
      Vol:
    E105-C No:10
      Page(s):
    457-465

    A detailed investigation of DC and RF performance of AlGaN/GaN HEMT on 3C-SiC/low resistive silicon (LR-Si) substrate by introducing a thick GaN layer is reported in this paper. The hetero-epitaxial growth is achieved by metal organic chemical vapor deposition (MOCVD) on a commercially prepared 6-inch LR-Si substrate via a 3C-SiC intermediate layer. The reported HEMT exhibited very low RF loss and thermally stable amplifier characteristics with the introduction of a thick GaN layer. The temperature-dependent small-signal and large-signal characteristics verified the effectiveness of the thick GaN layer on LR-Si, especially in reduction of RF loss even at high temperatures. In summary, a high potential of the reported device is confirmed for microwave applications.

741-760hit(22683hit)