The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

2461-2480hit(5900hit)

  • A Generalized Construction of Optimal Zero-Correlation Zone Sequence Set from a Perfect Sequence Pair

    Takafumi HAYASHI  Shinya MATSUFUJI  

     
    LETTER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2337-2344

    The present paper introduces a new approach to the construction of a sequence set with a zero-correlation zone (ZCZ). This sequence set is referred to as a ZCZ sequence set. The proposed sequence construction generates a ZCZ sequence set from a perfect sequence pair or a single perfect sequence. The proposed method can generate an optimal ZCZ sequence set, the member size of which reaches the theoretical bound.

  • A Novel PN Complementary Pair for Synchronization and Channel Estimation

    Lifeng HE  Fang YANG  Kewu PENG  Jian SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:11
      Page(s):
    3189-3192

    In this paper, a novel pseudo-random noise complementary pair (PNCP) is proposed and adopted as the guard intervals in the time-domain synchronous OFDM (TDS-OFDM) system. The proposed PNCP has nearly ideal aperiodic auto-correlation property and inherits the differential property of the PN sequence. Simulations demonstrate the proposed TDS-OFDM system padded with PNCP could achieve better performance in both synchronization and channel estimation than the conventional TDS-OFDM system.

  • NP-Hard and k-EXPSPACE-Hard Cast Puzzles

    Chuzo IWAMOTO  Kento SASAKI  Kenji NISHIO  Kenichi MORITA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:11
      Page(s):
    2995-3004

    A disentanglement puzzle consists of mechanically interlinked pieces, and the puzzle is solved by disentangling one piece from another set of pieces. A cast puzzle is a type of disentanglement puzzle, where each piece is a zinc die-casting alloy. In this paper, we consider the generalized cast puzzle problem whose input is the layout of a finite number of pieces (polyhedrons) in the 3-dimensional Euclidean space. For every integer k ≥ 0, we present a polynomial-time transformation from an arbitrary k-exponential-space Turing machine M and its input x to a cast puzzle c1 of size k-exponential in |x| such that M accepts x if and only if c1 is solvable. Here, the layout of c1 is encoded as a string of length polynomial (even if c1 has size k-exponential). Therefore, the cast puzzle problem of size k-exponential is k-EXPSPACE-hard for every integer k ≥ 0. We also present a polynomial-time transformation from an arbitrary instance f of the SAT problem to a cast puzzle c2 such that f is satisfiable if and only if c2 is solvable.

  • Self-Synchronizable Decoding Algorithms for Transmission with Redundant Information at Decoder

    Raul MARTINEZ-NORIEGA  Isao ABE  Kazuhiko YAMAGUCHI  

     
    PAPER-Coding Theory

      Vol:
    E93-A No:11
      Page(s):
    1958-1965

    A novel self-synchronizable decoding algorithm for transmissions with redundant information is proposed. We assume that desynchronization occurs because a continuous deletion of bits in the channel. The decoder bases its decision on a metric which involves the syndrome and the Hamming distance between certain codeword and its corresponding updated codeword after one iteration of sum-product decoding. The foundation of the previous assumption relies on what we called "CP-distance." The larger the CP-distance of a code the better the synchronization characteristics. Moreover, our proposal is not restricted to cyclically permutable (CP) codes as previous proposals. Theoretical foundation and experimental results show good performance of our algorithm.

  • A Joint Synchronization and Demodulation Scheme for UWB Systems

    Yongwei QIAO  Tiejun LV  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2742-2752

    In this paper, a joint blind synchronization and demodulation scheme is developed for ultra-wideband (UWB) impulse radio systems. Based on the prior knowledge of the direct-sequence (DS) spread codes, the proposed approach can achieve frame-level synchronization with the help of frame-rate samples. Taking advantage of the periodicity of the DS spread codes, the frame-level synchronization can be carried out even in one symbol interval. On the other hand, after timing acquisition, these frame-rate samples can be re-utilized also for demodulation. Thus the acquisition time and the implementation complexity are reduced considerably. The performance improvement can be justified by both theoretical analysis and simulation results, in terms of acquisition probability and bit error rate (BER).

  • Improving Proximity and Diversity in Multiobjective Evolutionary Algorithms

    Chang Wook AHN  Yehoon KIM  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E93-D No:10
      Page(s):
    2879-2882

    This paper presents an approach for improving proximity and diversity in multiobjective evolutionary algorithms (MOEAs). The idea is to discover new nondominated solutions in the promising area of search space. It can be achieved by applying mutation only to the most converged and the least crowded individuals. In other words, the proximity and diversity can be improved because new nondominated solutions are found in the vicinity of the individuals highly converged and less crowded. Empirical results on multiobjective knapsack problems (MKPs) demonstrate that the proposed approach discovers a set of nondominated solutions much closer to the global Pareto front while maintaining a better distribution of the solutions.

  • An Adaptive Niching EDA with Balance Searching Based on Clustering Analysis

    Benhui CHEN  Jinglu HU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:10
      Page(s):
    1792-1799

    For optimization problems with irregular and complex multimodal landscapes, Estimation of Distribution Algorithms (EDAs) suffer from the drawback of premature convergence similar to other evolutionary algorithms. In this paper, we propose an adaptive niching EDA based on Affinity Propagation (AP) clustering analysis. The AP clustering is used to adaptively partition the niches and mine the searching information from the evolution process. The obtained information is successfully utilized to improve the EDA performance by using a balance niching searching strategy. Two different categories of optimization problems are used to evaluate the proposed adaptive niching EDA. The first one is solving three benchmark functional multimodal optimization problems by a continuous EDA based on single Gaussian probabilistic model; the other one is solving a real complicated discrete EDA optimization problem, the HP model protein folding based on k-order Markov probabilistic model. Simulation results show that the proposed adaptive niching EDA is an efficient method.

  • The Time Complexity of Hsu and Huang's Self-Stabilizing Maximal Matching Algorithm

    Masahiro KIMOTO  Tatsuhiro TSUCHIYA  Tohru KIKUNO  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E93-D No:10
      Page(s):
    2850-2853

    The exact time complexity of Hsu and Huan's self-stabilizing maximal matching algorithm is provided. It is n2 + n - 2 if the number of nodes n is even and n2 + n - if n is odd.

  • A Priority Routing Protocol Based on Location and Moving Direction in Delay Tolerant Networks

    Jian SHEN  Sangman MOH  Ilyong CHUNG  

     
    PAPER-Information Network

      Vol:
    E93-D No:10
      Page(s):
    2763-2775

    Delay Tolerant Networks (DTNs) are a class of emerging networks that experience frequent and long-duration partitions. Delay is inevitable in DTNs, so ensuring the validity and reliability of the message transmission and making better use of buffer space are more important than concentrating on how to decrease the delay. In this paper, we present a novel routing protocol named Location and Direction Aware Priority Routing (LDPR) for DTNs, which utilizes the location and moving direction of nodes to deliver a message from source to destination. A node can get its location and moving direction information by receiving beacon packets periodically from anchor nodes and referring to received signal strength indicator (RSSI) for the beacon. LDPR contains two schemes named transmission scheme and drop scheme, which take advantage of the nodes' information of the location and moving direction to transmit the message and store the message into buffer space, respectively. Each message, in addition, is branded a certain priority according to the message's attributes (e.g. importance, validity, security and so on). The message priority decides the transmission order when delivering the message and the dropping sequence when the buffer is full. Simulation results show that the proposed LDPR protocol outperforms epidemic routing (EPI) protocol, prioritized epidemic routing (PREP) protocol, and DTN hierarchical routing (DHR) protocol in terms of packet delivery ratio, normalized routing overhead and average end-to-end delay. It is worth noting that LDPR doesn't need infinite buffer size to ensure the packet delivery ratio as in EPI. In particular, even though the buffer size is only 50, the packet delivery ratio of LDPR can still reach 93.9%, which can satisfy general communication demand. We expect LDPR to be of greater value than other existing solutions in highly disconnected and mobile networks.

  • A Semi-Supervised Approach to Perceived Age Prediction from Face Images

    Kazuya UEKI  Masashi SUGIYAMA  Yasuyuki IHARA  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E93-D No:10
      Page(s):
    2875-2878

    We address the problem of perceived age estimation from face images, and propose a new semi-supervised approach involving two novel aspects. The first novelty is an efficient active learning strategy for reducing the cost of labeling face samples. Given a large number of unlabeled face samples, we reveal the cluster structure of the data and propose to label cluster-representative samples for covering as many clusters as possible. This simple sampling strategy allows us to boost the performance of a manifold-based semi-supervised learning method only with a relatively small number of labeled samples. The second contribution is to take the heterogeneous characteristics of human age perception into account. It is rare to misjudge the age of a 5-year-old child as 15 years old, but the age of a 35-year-old person is often misjudged as 45 years old. Thus, magnitude of the error is different depending on subjects' age. We carried out a large-scale questionnaire survey for quantifying human age perception characteristics, and propose to utilize the quantified characteristics in the framework of weighted regression. Consequently, our proposed method is expressed in the form of weighted least-squares with a manifold regularizer, which is scalable to massive datasets. Through real-world age estimation experiments, we demonstrate the usefulness of the proposed method.

  • Design of Sigmoid Activation Functions for Fuzzy Cognitive Maps via Lyapunov Stability Analysis

    In Keun LEE  Soon Hak KWON  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E93-D No:10
      Page(s):
    2883-2886

    Fuzzy cognitive maps (FCMs) are used to support decision-making, and the decision processes are performed by inference of FCMs. The inference greatly depends on activation functions such as sigmoid function, hyperbolic tangent function, step function, and threshold linear function. However, the sigmoid functions widely used for decision-making processes have been designed by experts. Therefore, we propose a method for designing sigmoid functions through Lyapunov stability analysis. We show the usefulness of the proposed method through the experimental results in inference of FCMs using the designed sigmoid functions.

  • A Low-Profile Dual-Polarized Directional Antenna for Enhancing Channel Capacity in Indoor MIMO Systems

    Daisuke UCHIDA  Hiroyuki ARAI  Yuki INOUE  Keizo CHO  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2570-2577

    The use of directional antenna and polarization diversity techniques has been reported to achieve good MIMO performance. Low-profile, small structures are required to configure the MIMO antenna with these techniques. First, we assume downlink transmission in indoor MIMO systems and present the design guidelines for the radiation pattern to obtain large channel capacity by the ray-tracing method. We then propose a uni-directional, dual-polarized MIMO antenna with a thickness of 0.24λ based on the design guidelines. The proposed antenna consists of dipole antennas mounted horizontally to the ground plane and cavity backed slot antennas for vertical polarization. We apply the proposed antenna to 2 2 MIMO transmission and demonstrate the effectiveness of channel capacity enhancement in an actual environment. The improvement factor is revealed to be +16.2% with place averaged value compared to sleeve antenna configuration.

  • Compact Circularly Polarized Microstrip Antennas Using EM Coupled Loop Resonators

    Junho CHOI  Seongmin PYO  Sang-Min HAN  Young-Sik KIM  

     
    LETTER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2658-2661

    In this letter, compact loop resonator type circular polarization (CP) antennas with a square ring and an X-shaped meander loop are presented. Both antennas are fed to a microstrip line with electromagnetic coupling. By adjusting the gap and length of a coupled microstrip line, the magnitude and phase conditions of two orthogonal modes for CP can be determined. The proposed antennas show good axial ratios and also good agreements between experimented and simulated results.

  • Hybrid Uniform Distribution of Particle Swarm Optimizer

    Junqi ZHANG  Ying TAN  Lina NI  Chen XIE  Zheng TANG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:10
      Page(s):
    1782-1791

    Particle swarm optimizer (PSO) is a stochastic global optimization technique based on a social interaction metaphor. Because of the complexity, dynamics and randomness involved in PSO, it is hard to theoretically analyze the mechanism on which PSO depends. Statistical results have shown that the probability distribution of PSO is a truncated triangle, with uniform probability across the middle that decreases on the sides. The "truncated triangle" is also called the "Maya pyramid" by Kennedy. However, very little is known regarding the sampling distribution of PSO in itself. In this paper, we theoretically analyze the "Maya pyramid" without any assumption and derive its computational formula, which is actually a hybrid uniform distribution that looks like a trapezoid and conforms with the statistical results. Based on the derived density function of the hybrid uniform distribution, the search strategy of PSO is defined and quantified to characterize the mechanism of the search strategy in PSO. In order to show the significance of these definitions based on the derived hybrid uniform distribution, the comparison between the defined search strategies of the classical linear decreasing weight based PSO and the canonical constricted PSO suggested by Clerc is illustrated and elaborated.

  • Visual Knowledge Structure Reasoning with Intelligent Topic Map

    Huimin LU  Boqin FENG  Xi CHEN  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E93-D No:10
      Page(s):
    2805-2812

    This paper presents a visual knowledge structure reasoning method using Intelligent Topic Map which extends the conventional Topic Map in structure and enhances its reasoning functions. Visual knowledge structure reasoning method integrates two types of knowledge reasoning: the knowledge logical relation reasoning and the knowledge structure reasoning. The knowledge logical relation reasoning implements knowledge consistency checking and the implicit associations reasoning between knowledge points. We propose a Knowledge Unit Circle Search strategy for the knowledge structure reasoning. It implements the semantic implication extension, the semantic relevant extension and the semantic class belonging confirmation. Moreover, the knowledge structure reasoning results are visualized using ITM Toolkit. A prototype system of visual knowledge structure reasoning has been implemented and applied to the massive knowledge organization, management and service for education.

  • Error Probability in Multichannel Reception with M-QAM, M-PAM and R-QAM Schemes under Generalized Fading

    Wamberto Jose Lira de QUEIROZ  Marcelo Sampaio de ALENCAR  Waslon Terllizzie Araujo LOPES  Francisco MADEIRO  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E93-B No:10
      Page(s):
    2677-2687

    This article presents a unified analytical framework to evaluate the bit error probability (BEP) of M-QAM, R-QAM and M-PAM modulation schemes for different types of fading channels, modeled with Hoyt, Rice, Rayleigh, Nakagami and Log-normal distributions. The mathematical development is obtained for maximal-ratio combining multichannel reception and assumes independent fading paths. The new BEP expressions are written in terms of the integral of the moment generating funcion of the instantaneos signal-to-noise ratio. The advantage of this approach is that it can be applied to any type of fading, and the integrals, even though they do not provide exact expressions, can be numerically evaluated.

  • Optimization of Field Uniformity in a Reverberation Chamber Using Quadratic Residue Diffusers

    Jung-Hoon KIM  Sung-Il YANG  Joong-Geun RHEE  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E93-B No:10
      Page(s):
    2787-2790

    This letter presents results showing improved field uniformity in a reverberation chamber using quadratic residue diffusers. The optimal occupying ratio of the diffusers on one side wall of the chamber is presented. A reverberation chamber is an alternative to the semi-anechoic chamber, which is widely used for the analysis and measurement of electromagnetic interference and immunity. To analyze the field characteristics, quadratic residue diffusers were designed for the 1-3 GHz frequency band, and the FDTD method was used. At 1-3 GHz, the standard deviation of the test volume in the reverberation chamber was investigated. The reverberation chamber had good field uniformity when quadratic residue diffusers occupy 37.5-50% of one side wall of the reverberation chamber; the field uniformity saturated at the diffuser occupancy rate of 75%.

  • Error Performance of Prerake Diversity Combining-Based UWB Spatial Multiplexing MIMO Systems over Indoor Wireless Channels

    Jinyoung AN  Sangchoon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2817-2821

    In this letter, we consider a novel ultra-wideband (UWB) spatial multiplexing (SM) multiple input multiple output (MIMO) structure, which consists of prerake diversity combiners in the transmitter and a zero forcing (ZF) detector in the receiver. For a UWB SM MIMO system with N transmit antennas, M receive antennas, and L resolvable multipath components, it is shown that the proposed prerake combining-based MIMO detection scheme has the diversity order of (LN-M+1) and its BER performance is analytically presented in a log-normal fading channel and also compared with that of a rake combining-based ZF scheme.

  • Rapid-Thermal Annealing of Amorphous Silicon on Oxide Semiconductors

    Saurabh SAXENA  Jin JANG  

     
    PAPER

      Vol:
    E93-C No:10
      Page(s):
    1495-1498

    Crystallization of amorphous silicon on oxide semiconductors using rapid-thermal annealing in vacuum is investigated. A 30 nm n-type amorphous silicon (a-Si) is deposited on zinc-oxide (ZnO) and aluminum doped zinc-oxide (ZnO:Al) by PECVD on glass substrate. Rapid-thermal annealing for 30 min to 180 min of a-Si on ZnO and ZnO:Al were performed at 600. It is found that crystallization of a-Si on oxide semiconductors can be done in shorter time than that of standard solid-phase crystallization (SPC) of amorphous silicon on glass substrate at 600. It has been verified using Raman spectroscopy that a-Si on ZnO:Al changes into polycrystalline silicon (poly-Si) in 30 min at 600.

  • KMCD-IME (Keeping the Maximum Communication Distance and Initial Mutual Exclusion among Router Nodes) Topology Control Algorithm for Effective Routing in ZigBee Networks

    Saeyoung AHN  Sunshin AN  

     
    LETTER-Topology Control

      Vol:
    E93-A No:10
      Page(s):
    1744-1747

    In a ZigBee network, a finite address space is allocated to every potential parent device and a device may disallow a join request once this address space is exhausted. When a new node (child) requests to a coordinator (parent) to join a ZigBee network, the coordinator checks its address space. If it has sufficient address space, the coordinator accepts the new node as its child in the ZigBee network. If the new node has router capability (JoinAsRouter), it becomes a router in the ZigBee network. However, this association procedure makes ZigBee networks inefficient for routing, because the coordinator checks only the maximum and current numbers of child nodes. In the worst case, the network will be arranged so that the router nodes are crowded in the network. Therefore, we propose the KMCD-IME (Keeping the Maximum Communication Distance and Initial Mutual Exclusion among router nodes) algorithm with two additional conditions when a new node joins the ZigBee network. The first condition maintains the maximum communication distance between the new node and the would-be parent node. The second condition is the Initial Mutual Exclusion among router nodes. The router nodes are evenly spread across the network by KMCD-IME and an effective routing topology is formed. Therefore, the KMCD-IME algorithm extends the lifetime of the ZigBee network.

2461-2480hit(5900hit)