The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

2621-2640hit(5900hit)

  • "The Center of Scattering"--Where is the Center of a Polygonal Cylinder for Electromagnetic Scattering ?--

    Masahiro HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E93-C No:1
      Page(s):
    74-76

    Phase information on wave scattering is not unique and greatly depends on a choice of the origin of coordinates in the measurement system. The present paper argues that the center of scattering for polygonal cylinders should not be a geometrical center of the obstacle such as a center of gravity but be a position that acts as a balance to the electrostatic field effects from edge points. The position is exactly determined in terms of edge positions, edge parameters and lengths of side of polygons. A few examples are given to illustrate a difference from the center of geometry.

  • Differential Fault Analysis on CLEFIA with 128, 192, and 256-Bit Keys

    Junko TAKAHASHI  Toshinori FUKUNAGA  

     
    PAPER-Cryptanalysis

      Vol:
    E93-A No:1
      Page(s):
    136-143

    This paper describes a differential fault analysis (DFA) attack against CLEFIA. The proposed attack can be applied to CLEFIA with all supported keys: 128, 192, and 256-bit keys. DFA is a type of side-channel attack. This attack enables the recovery of secret keys by injecting faults into a secure device during its computation of the cryptographic algorithm and comparing the correct ciphertext with the faulty one. CLEFIA is a 128-bit blockcipher with 128, 192, and 256-bit keys developed by the Sony Corporation in 2007. CLEFIA employs a generalized Feistel structure with four data lines. We developed a new attack method that uses this characteristic structure of the CLEFIA algorithm. On the basis of the proposed attack, only 2 pairs of correct and faulty ciphertexts are needed to retrieve the 128-bit key, and 10.78 pairs on average are needed to retrieve the 192 and 256-bit keys. The proposed attack is more efficient than any previously reported. In order to verify the proposed attack and estimate the calculation time to recover the secret key, we conducted an attack simulation using a PC. The simulation results show that we can obtain each secret key within three minutes on average. This result shows that we can obtain the entire key within a feasible computational time.

  • Eyegaze Detection from Monocular Camera Image for Eyegaze Communication System

    Ryo OHTERA  Takahiko HORIUCHI  Hiroaki KOTERA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E93-D No:1
      Page(s):
    134-143

    An eyegaze interface is one of the key technologies as an input device in the ubiquitous-computing society. In particular, an eyegaze communication system is very important and useful for severely handicapped users such as quadriplegic patients. Most of the conventional eyegaze tracking algorithms require specific light sources, equipment and devices. In this study, a simple eyegaze detection algorithm is proposed using a single monocular video camera. The proposed algorithm works under the condition of fixed head pose, but slight movement of the face is accepted. In our system, we assume that all users have the same eyeball size based on physiological eyeball models. However, we succeed to calibrate the physiologic movement of the eyeball center depending on the gazing direction by approximating it as a change in the eyeball radius. In the gaze detection stage, the iris is extracted from a captured face frame by using the Hough transform. Then, the eyegaze angle is derived by calculating the Euclidean distance of the iris centers between the extracted frame and a reference frame captured in the calibration process. We apply our system to an eyegaze communication interface, and verified the performance through key typing experiments with a visual keyboard on display.

  • Compact Multimode Horn with Coaxial Corrugation for Circular Coverage

    Takashi KOBAYASHI  Hiroyuki DEGUCHI  Mikio TSUJI  Kouhei OMORI  

     
    PAPER

      Vol:
    E93-C No:1
      Page(s):
    32-38

    For achieving low cross-polarization component in addition to circular-coverage pattern in compact structure, this paper proposes a novel multimode horn with arbitrary coaxial-corrugation configuration which plays two roles of mode converters and chokes. The proposed horn can be designed by iteration of non-linear optimization procedure based on generalized scattering matrices pre-calculated by the mode-matching technique. We show a compact horn with four coaxial corrugations for shaping circular-coverage beam over frequency range of bandwidth 20%. The effectiveness of the designed horn is discussed by evaluating VSWR and radiation characteristics in X-band numerically and experimentally.

  • A Variable Step-Size Proportionate NLMS Algorithm for Identification of Sparse Impulse Response

    Ligang LIU  Masahiro FUKUMOTO  Sachio SAIKI  Shiyong ZHANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:1
      Page(s):
    233-242

    Recently, proportionate adaptive algorithms have been proposed to speed up convergence in the identification of sparse impulse response. Although they can improve convergence for sparse impulse responses, the steady-state misalignment is limited by the constant step-size parameter. In this article, based on the principle of least perturbation, we first present a derivation of normalized version of proportionate algorithms. Then by taking the disturbance signal into account, we propose a variable step-size proportionate NLMS algorithm to combine the benefits of both variable step-size algorithms and proportionate algorithms. The proposed approach can achieve fast convergence with a large step size when the identification error is large, and then considerably decrease the steady-state misalignment with a small step size after the adaptive filter reaches a certain degree of convergence. Simulation results verify the effectiveness of the proposed approach.

  • Global Nonlinear Optimization Based on Wave Function and Wave Coefficient Equation

    Hideki SATOH  

     
    PAPER-Nonlinear Problems

      Vol:
    E93-A No:1
      Page(s):
    291-301

    A method was developed for deriving the approximate global optimum of a nonlinear objective function with multiple local optimums. The objective function is expanded into a linear wave coefficient equation, so the problem of maximizing the objective function is reduced to that of maximizing a quadratic function with respect to the wave coefficients. Because a wave function expressed by the wave coefficients is used in the algorithm for maximizing the quadratic function, the algorithm is equivalent to a full search algorithm, i.e., one that searches in parallel for the global optimum in the whole domain of definition. Therefore, the global optimum is always derived. The method was evaluated for various objective functions, and computer simulation showed that a good approximation of the global optimum for each objective function can always be obtained.

  • A Fault Signature Characterization Based Analog Circuit Testing Scheme and the Extension of IEEE 1149.4 Standard

    Wimol SAN-UM  Masayoshi TACHIBANA  

     
    PAPER

      Vol:
    E93-D No:1
      Page(s):
    33-42

    An analog circuit testing scheme is presented. The testing technique is a sinusoidal fault signature characterization, involving the measurement of DC offset, amplitude, frequency and phase shift, and the realization of two crossing level voltages. The testing system is an extension of the IEEE 1149.4 standard through the modification of an analog boundary module, affording functionalities for both on-chip testing capability, and accessibility to internal components for off-chip testing. A demonstrating circuit-under-test, a 4th-order Gm-C low-pass filter, and the proposed analog testing scheme are implemented in a physical level using 0.18-µm CMOS technology, and simulated using Hspice. Both catastrophic and parametric faults are potentially detectable at the minimum parameter variation of 0.5%. The fault coverage associated with CMOS transconductance operational amplifiers and capacitors are at 94.16% and 100%, respectively. This work offers the enhancement of standardizing test approach, which reduces the complexity of testing circuit and provides non-intrusive analog circuit testing.

  • Recursive Double-Size Modular Multiplications from Euclidean and Montgomery Multipliers

    Masayuki YOSHINO  Katsuyuki OKEYA  Camille VUILLAUME  

     
    PAPER-Mathematics

      Vol:
    E93-A No:1
      Page(s):
    180-187

    A technique for computing the quotient (⌊ ab/n ⌋) of Euclidean divisions from the difference of two remainders (ab (mod n) - ab (mod n+1)) was proposed by Fischer and Seifert. The technique allows a 2-bit modular multiplication to work on most -bit modular multipliers. However, the cost of the quotient computation rises sharply when computing modular multiplications larger than 2 bits with a recursive approach. This paper addresses the computation cost and improves on previous 2-bit modular multiplication algorithms to return not only the remainder but also the quotient, resulting in an higher performance in the recursive approach, which becomes twice faster in the quadrupling case and four times faster in the octupling case. In addition to Euclidean multiplication, this paper proposes a new 2-bit Montgomery multiplication algorithm to return both of the remainder and the quotient.

  • Circuit Design Optimization Using Genetic Algorithm with Parameterized Uniform Crossover

    Zhiguo BAO  Takahiro WATANABE  

     
    PAPER-Nonlinear Problems

      Vol:
    E93-A No:1
      Page(s):
    281-290

    Evolvable hardware (EHW) is a new research field about the use of Evolutionary Algorithms (EAs) to construct electronic systems. EHW refers in a narrow sense to use evolutionary mechanisms as the algorithmic drivers for system design, while in a general sense to the capability of the hardware system to develop and to improve itself. Genetic Algorithm (GA) is one of typical EAs. We propose optimal circuit design by using GA with parameterized uniform crossover (GApuc) and with fitness function composed of circuit complexity, power, and signal delay. Parameterized uniform crossover is much more likely to distribute its disruptive trials in an unbiased manner over larger portions of the space, then it has more exploratory power than one and two-point crossover, so we have more chances of finding better solutions. Its effectiveness is shown by experiments. From the results, we can see that the best elite fitness, the average value of fitness of the correct circuits and the number of the correct circuits of GApuc are better than that of GA with one-point crossover or two-point crossover. The best case of optimal circuits generated by GApuc is 10.18% and 6.08% better in evaluating value than that by GA with one-point crossover and two-point crossover, respectively.

  • A Fault Dependent Test Generation Method for State-Observable FSMs to Increase Defect Coverage under the Test Length Constraint

    Ryoichi INOUE  Toshinori HOSOKAWA  Hideo FUJIWARA  

     
    PAPER

      Vol:
    E93-D No:1
      Page(s):
    24-32

    Since scan testing is not based on the function of the circuit, but rather the structure, it is considered to be both a form of over testing and under testing. Moreover, it is important to test VLSIs using the given function. Since the functional specifications are described explicitly in the FSMs, high test quality is expected by performing logical fault testing and timing fault testing. This paper proposes a fault-dependent test generation method to detect specified fault models completely and to increase defect coverage as much as possible under the test length constraint. We present experimental results for MCNC'91 benchmark circuits to evaluate bridging fault coverage, transition fault coverage, and statistical delay quality level and to show the effectiveness of the proposed test generation method compared with a stuck-at fault-dependent test generation method.

  • Tweakable Pseudorandom Permutation from Generalized Feistel Structure

    Atsushi MITSUDA  Tetsu IWATA  

     
    PAPER-Symmetric Cryptography

      Vol:
    E93-A No:1
      Page(s):
    13-21

    Tweakable pseudorandom permutations have wide applications such as the disk sector encryption, and the underlying primitive for efficient MACs and authenticated encryption schemes. Goldenberg et al. showed constructions of a tweakable pseudorandom permutation based on the Feistel structure. In this paper, we explore the possibility of designing tweakable pseudorandom permutations based on the Generalized Feistel Structure. We show that tweakable pseudorandom permutations can be obtained without increasing the number of rounds compared to the non-tweakable versions. We also present designs that take multiple tweaks as input.

  • Reliability Analysis and Modeling of ZigBee Networks

    Cheng-Min LIN  

     
    PAPER-Dependable Computing

      Vol:
    E93-D No:1
      Page(s):
    68-78

    The architecture of ZigBee networks focuses on developing low-cost, low-speed ubiquitous communication between devices. The ZigBee technique is based on IEEE 802.15.4, which specifies the physical layer and medium access control (MAC) for a low rate wireless personal area network (LR-WPAN). Currently, numerous wireless sensor networks have adapted the ZigBee open standard to develop various services to promote improved communication quality in our daily lives. The problem of system and network reliability in providing stable services has become more important because these services will be stopped if the system and network reliability is unstable. The ZigBee standard has three kinds of networks; star, tree and mesh. The paper models the ZigBee protocol stack from the physical layer to the application layer and analyzes these layer reliability and mean time to failure (MTTF). Channel resource usage, device role, network topology and application objects are used to evaluate reliability in the physical, medium access control, network, and application layers, respectively. In the star or tree networks, a series system and the reliability block diagram (RBD) technique can be used to solve their reliability problem. However, a division technology is applied here to overcome the problem because the network complexity is higher than that of the others. A mesh network using division technology is classified into several non-reducible series systems and edge parallel systems. Hence, the reliability of mesh networks is easily solved using series-parallel systems through our proposed scheme. The numerical results demonstrate that the reliability will increase for mesh networks when the number of edges in parallel systems increases while the reliability quickly drops when the number of edges and the number of nodes increase for all three networks. More use of resources is another factor impact on reliability decreasing. However, lower network reliability will occur due to network complexity, more resource usage and complex object relationship.

  • Fast Shape Optimization of Metalization Patterns for Power-MOSFET Based Driver

    Bo YANG  Shigetoshi NAKATAKE  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E92-A No:12
      Page(s):
    3052-3060

    This paper addresses the problem of optimizing metalization patterns of back-end connections for the power-MOSFET based driver since the back-end connections tend to dominate the on-resistance Ron of the driver. We propose a heuristic algorithm to seek for better geometric shapes for the patterns targeting at minimizing Ron and at balancing the current distribution. In order to speed up the analysis, the equivalent resistance network of the driver is modified by inserting ideal switches to avoid repeatedly inverting the admittance matrix. With the behavioral model of the ideal switch, we can significantly accelerate the optimization. Simulation on three drivers from industrial TEG data demonstrates that our algorithm can reduce Ron effectively by shaping metals appropriately within a given routing area.

  • Hydrogen Plasma Annealing of ZnO Films Deposited by Magnetron Sputtering with Third Electrode

    Kanji YASUI  Yutaka OOSHIMA  Yuichiro KUROKI  Hiroshi NISHIYAMA  Masasuke TAKATA  Tadashi AKAHANE  

     
    PAPER-Nanomaterials and Nanostructures

      Vol:
    E92-C No:12
      Page(s):
    1438-1442

    Al doped zinc oxide (AZO) films were deposited using a radio frequency (rf) magnetron sputtering apparatus with a mesh grid electrode. Improvement of crystalline uniformity was achieved by the use of an appropriate negative grid bias to effectively suppress the bombardment of high-energy charged particles onto the film surface. The uniformity of the film's electronic properties, such as resistivity, carrier concentration and Hall mobility, was also improved using the sputtering method. Hydrogen plasma annealing was investigated to further decrease the resistivity of the ZnO films and the carrier concentration was increased by 1-21020 cm-3 without decrease in the Hall mobility.

  • Filter Size Determination of Moving Average Filters for Extended Differential Detection of OFDM Preambles

    Minjoong RIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:12
      Page(s):
    3953-3956

    OFDM (Orthogonal Frequency Division Multiplexing) is widely used in wideband wireless communication systems due to its excellent performance. One of the most important operations in OFDM receivers is preamble detection. This paper addresses a general form of extended differential detection methods, which is a combination of differential detection and a moving average filter. This paper also presents a filter size determination method that achieves satisfactory performance in various channel environments.

  • Multi-Ferroic Properties of Garnet and Lead Zirconium Titanate Bilayer for Magneto-Optic Spatial Light Modulators

    Shinichiro MITO  Jooyoung KIM  Kwang Hyun CHUNG  Hiroyuki TAKAGI  Mitsuteru INOUE  

     
    BRIEF PAPER-Fundamentals for Nanodevices

      Vol:
    E92-C No:12
      Page(s):
    1487-1489

    We investigated an analogue modulation of magneto-optic spatial light modulator (MOSLM). For enhancement of the modulation from the voltage-driving MOSLM, magnetostriction and saturation magnetization of magnetic garnet films and piezoelectric constant of PZT films were investigated. The performance was expected to be improved by using Bismuth, Dysprosium and Aluminum substituted Yttrium Iron garnet, which effective magnetic field showed 20 times higher than Yttrium Iron garnet.

  • A Two-Level Cache Design Space Exploration System for Embedded Applications

    Nobuaki TOJO  Nozomu TOGAWA  Masao YANAGISAWA  Tatsuo OHTSUKI  

     
    PAPER-Embedded, Real-Time and Reconfigurable Systems

      Vol:
    E92-A No:12
      Page(s):
    3238-3247

    Recently, two-level cache, L1 cache and L2 cache, is commonly used in a processor. Particularly in an embedded system whereby a single application or a class of applications is repeatedly executed on a processor, its cache configuration can be customized such that an optimal one is achieved. An optimal two-level cache configuration can be obtained which minimizes overall memory access time or memory energy consumption by varying the three cache parameters: the number of sets, a line size, and an associativity, for L1 cache and L2 cache. In this paper, we first extend the L1 cache simulation algorithm so that we can explore two-level cache configuration. Second, we propose two-level cache design space exploration algorithms: CRCB-T1 and CRCB-T2, each of which is based on applying Cache Inclusion Property to two-level cache configuration. Each of the proposed algorithms realizes exact cache simulation but decreases the number of cache hit/miss judgments by a factor of several thousands. Experimental results show that, by using our approach, the number of cache hit/miss judgments required to optimize a cache configurations is reduced to 1/50-1/5500 compared to the exhaustive approach. As a result, our proposed approach totally runs an average of 1398.25 times faster compared to the exhaustive approach. Our proposed cache simulation approach achieves the world fastest two-level cache design space exploration.

  • Fast Analysis of On-Chip Power Grid Circuits by Extended Truncated Balanced Realization Method

    Duo LI  Sheldon X.-D. TAN  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E92-A No:12
      Page(s):
    3061-3069

    In this paper, we present a novel analysis approach for large on-chip power grid circuit analysis. The new approach, called ETBR for extended truncated balanced realization, is based on model order reduction techniques to reduce the circuit matrices before the simulation. Different from the (improved) extended Krylov subspace methods EKS/IEKS, ETBR performs fast truncated balanced realization on response Gramian to reduce the original system. ETBR also avoids the adverse explicit moment representation of the input signals. Instead, it uses spectrum representation in frequency domain for input signals by fast Fourier transformation. The proposed method is very amenable for threading-based parallel computing, as the response Gramian is computed in a Monte-Carlo-like sampling style and each sampling can be computed in parallel. This contrasts with all the Krylov subspace based methods like the EKS method, where moments have to be computed in a sequential order. ETBR is also more flexible for different types of input sources and can better capture the high frequency contents than EKS, and this leads to more accurate results especially for fast changing input signals. Experimental results on a number of large networks (up to one million nodes) show that, given the same order of the reduced model, ETBR is indeed more accurate than the EKS method especially for input sources rich in high-frequency components. If parallel computing is explored, ETBR can be an order of magnitude faster than the EKS/IEKS method.

  • Functionalized Carbon Nanotubes for Mixed Matrix Membrane

    Suhaila MOHD. SANIP  Ahmad Fauzi ISMAIL  Madzlan AZIZ  Tetsuo SOGA  

     
    PAPER-Nanomaterials and Nanostructures

      Vol:
    E92-C No:12
      Page(s):
    1427-1431

    Carbon nanotubes (CNTs) have generated great interest within the many areas of nanotechnology due to their superior and outstanding physical properties. However effective dispersion in many solvents has imposed limitations upon the use of CNTs in a number of novel applications. Functionalization presents a solution for CNTs to be more soluble which make them integrate well into any organic, inorganic or biological systems. CNTs can be easily functionalized using cyclodextrin (CD) treatment. The CD modification of carbon nanotubes is both simple and effective. It requires no prolonged heating, filtration and washing which can severely damage the small diameter nanotubes. The formation of surface functional groups and changes of nanotubes structures of functionalized carbon nanotubes (f-CNTs) were monitored by Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM), respectively. From the TGA results, the amount of weight loss of the f-CNTs in varying ratios indicated the amount of CD that was functionalized. It was also noted that the FTIR spectra showed the presence of functional groups associated with CD in the f-CNTs. As a result, the cyclodextrin groups were found to be possibly adsorbed at the surface of the nanotubes walls. The f-CNTs showed substantial solubility in N-methyl-2-pyrrolidone (NMP) which helps in a better distribution of the CNTs in the mixed matrix membrane (MMM) prepared. Hence, the influence of the f-CNTs in the polymer matrix will give rise to enhanced physical properties of the MMM suitable for applications in gas separations.

  • Decentralized Dynamic Sub-Carrier Assignment for OFDMA-Based Adhoc and Cellular Networks

    Van-Duc NGUYEN  Harald HAAS  Kyandoghere KYAMAKYA  Jean-Chamerlain CHEDJOU  Tien-Hoa NGUYEN  Seokho YOON  Hyunseung CHOO  

     
    PAPER-Network

      Vol:
    E92-B No:12
      Page(s):
    3753-3764

    In this paper, a novel decentralised dynamic sub-carrier assignment (DSA) algorithm for orthogonal frequency division multiple access (OFDMA)-based adhoc and cellular networks operating in time division duplexing (TDD) mode is proposed to solve the hidden and exposed node problem in media access control (MAC). This method reduces the co-channel interference (CCI), and thus increases the overall throughput of the network. Reduced CCI and increased throughput can be achieved, if time and frequency selectivity of the multi-path fading channel and the channel reciprocity offered by the TDD are fully exploited. The time and frequency selectivity of the channel are usually the main problem in mobile communication. However, in the context of channel assignment for OFDMA-based networks in TDD mode, the time and frequency selectivity of the channel are the key to reduce the interference. In the proposed channel assignment mechanism, several clusters of sub-carriers are assigned for data transmission between a transmitter and a receiver only if the corresponding channels of those sub-carriers linking this transmitter to potential victim receivers are deeply faded. In addition, the proposed algorithm works in a fully decentralised fashion and, therefore, it is able to effectively support ad hoc and multihop communication as well as network self-organisation. Numerical results show that the throughput obtained by the proposed approach for a given quality of service is higher than those of the conventional methods in any precondition of adhoc geographic scenario.

2621-2640hit(5900hit)