The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

1201-1220hit(5900hit)

  • High-Capacity Wireless Access Networks Using 920MHz Band for Wide-Area IoT/M2M Services Open Access

    Kazunori AKABANE  Nobuaki MOCHIZUKI  Shigeru TERUHI  Mamoru KOBAYASHI  Shuichi YOSHINO  Masashi SHIMIZU  Kazuhiro UEHARA  

     
    INVITED PAPER

      Vol:
    E99-B No:9
      Page(s):
    1920-1929

    In the near future, many sensors and terminals will be connected to the public network to provide various convenient IoT/M2M services. In order to connect many sensors to the network efficiently, wireless communication systems in the 920MHz band are seen as attractive solutions. We are focusing on the 920MHz band to research and develop high-capacity protocols that can accommodate many terminals, and low power consumption technologies for battery-driven terminals. In this paper, we describe the following three concrete wireless systems that use our proposals. (1) A physical distribution pallet management system that can handle thousands of pallet-embedded sensors and a wireless module with a battery lifetime of about ten years. (2) Water leakage monitoring system for underground pipes by using sensors and a wireless module in each valve box. (3) A wide-area and high-capacity radio relay system for smart metering services like the reading of gas meters. The radio relay system can accommodate various sensors and terminals and has large potential for providing various IoT/M2M services in conjunction with smart metering services.

  • A New Non-Uniform Weight-Updating Beamformer for LEO Satellite Communication

    Jie LIU  Zhuochen XIE  Huijie LIU  Zhengmin ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:9
      Page(s):
    1708-1711

    In this paper, a new non-uniform weight-updating scheme for adaptive digital beamforming (DBF) is proposed. The unique feature of the letter is that the effective working range of the beamformer is extended and the computational complexity is reduced by introducing the robust DBF based on worst-case performance optimization. The robust parameter for each weight updating is chosen by analyzing the changing rate of the Direction of Arrival (DOA) of desired signal in LEO satellite communication. Simulation results demonstrate the improved performance of the new Non-Uniform Weight-Updating Beamformer (NUWUB).

  • Efficient Resource Allocation for Proportional Fair Schedulers in Multihop Relay Networks

    Taejoon KIM  Byung-Kwan KIM  Heejung YU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:9
      Page(s):
    1750-1752

    In this letter, we present an efficient resource allocation algorithm for proportional fair schedulers in mobile multihop relay (MMR) networks. We consider a dual-hop cellular network assisted with a decode-and-forward relay station (RS). Since additional radio resources should be allocated in the wireless link between a base station (BS) and an RS, it is very important to determine the optimal amount of resources for this BS-to-RS link. The proposed resource allocation algorithm maximizes the utility of the overall MMR network in a proportionally fair point of view.

  • Resource Allocation for 3D Video Transmission in LTE System Based on Fuzzy Logic

    Yongqiang FEI  Yuping ZHAO  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E99-B No:9
      Page(s):
    2099-2107

    Due to the increasing demand for 3D video transmission over wireless networks, managing the quality of experience (QoE) of wireless 3D video clients is becoming increasingly important. However, the variability of compressed 3D video bit streams and the wireless channel condition as well as the complexity of 3D video viewing experience assessment make it difficult to properly allocate wireless transmission resources. In this paper, we discuss the characteristics of H.264 3D videos and QoE assessment of 3D video clients, and further propose a transmission scheme for 3D video transmission over a wireless communication system. The purpose of our scheme is to minimize the average ratio of stalls among all video streaming clients. By taking into account the playout lead and its change, we periodically evaluate the degree of urgency of each client as regards bitstream receipt based on fuzzy logic, and then allocate the transmission resource blocks to clients jointly considering their degrees of urgency and channel conditions. The adaptive modulation and coding scheme (MCS) is applied to ensure a low transmission error rate. Our proposed scheme is suitable for practical implementation since it has low complexity, and can be easily applied in 2D video transmission and in non-OFDM systems. Simulation results, based on three left-and-right-views 3D videos and the Long Term Evolution (LTE) system, demonstrate the validity of our proposed scheme.

  • Blind Carrier Frequency Offset Estimation Based on Particle Swarm Optimization Searching for Interleaved OFDMA Uplink

    Ann-Chen CHANG  Chih-Chang SHEN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:9
      Page(s):
    1740-1744

    In this letter, standard particle swarm optimization (PSO) with the center-symmetric trimmed correlation matrix and the orthogonal projection technique is firstly presented for blind carrier frequency offset estimation under interleaved orthogonal frequency division multiple access (OFDMA) uplink systems. It doesn't require eigenvalue decomposition and only needs a single OFDMA data block. Second, this letter also presents adaptive multiple inertia weights with Newton method to speed up the convergence of standard PSO iteration process. Meanwhile, the advantage of inherent interleaved OFDMA signal structure also is exploited to conquer the problems of local optimization and the effect of ambiguous peaks for the proposed approaches. Finally, several simulation results are provided for illustration and comparison.

  • Necessary Conditions for θ-Stability of Real Polynomials

    Younseok CHOO  

     
    LETTER-Systems and Control

      Vol:
    E99-A No:8
      Page(s):
    1628-1631

    In this letter we present some easily checkable necessary conditions for a polynomial with positive coefficients to have all its zeros in a prescribed sector in the left half of the complex plane. As an auxiliary result, we also obtain a new necessary condition for the Hurwitz stability.

  • Virtual Edge Architecture with Optical Bandwidth Resource Control

    Akira MISAWA  Konomi MOCHIZUKI  Hideo TSUCHIYA  Masahiro NAKAGAWA  Kyota HATTORI  Masaru KATAYAMA  Jun-ichi KANI  

     
    PAPER-Network

      Vol:
    E99-B No:8
      Page(s):
    1805-1812

    A virtual network edge using live migration of virtualized network functions (VNFs) can be expected to reduce computation time and save resources instead of conventional network edge routers that have complex functions. Wavelength-division-multiplexing/time-division-multiplexing (WDM/TDM) photonic switching technology for metro ring networks is proposed to provide fast bandwidth resource allocation for rapidly changing service-flow demand. However, there are no reports on the coexistence of high-speed path switching for live migration with fast bandwidth resource allocation, as far as we know. We propose an architecture that achieves both high-speed path switching and fast dynamic bandwidth allocation control for service flows with in-service live migration. The feature of this architecture is that the VNF for the virtual edge corresponds to each 10-gigabit Ethernet-passive optical network (10G-EPON) and fast route change can be achieved with a simple point-to-point path between VNFs and optical line terminals (OLTs). The second feature is that the live migration of a VNF is limited to a part of it that contains a larger number of subscribers. Owing to the reduction in the number of total paths, fast resource allocation can be provided.

  • Analysis of Information Floating with a Fixed Source of Information Considering Behavior Changes of Mobile Nodes

    Keisuke NAKANO  Kazuyuki MIYAKITA  

     
    PAPER

      Vol:
    E99-A No:8
      Page(s):
    1529-1538

    Information floating delivers information to mobile nodes in specific areas without meaningless spreading of information by permitting mobile nodes to directly transfer information to other nodes by wireless links in designated areas called transmittable areas. In this paper, we assume that mobile nodes change direction at intersections after receiving such information as warnings and local advertisements and that an information source remains in some place away from the transmittable area and continuously broadcasts information. We analyze performance of information floating under these assumptions to explore effects of the behavior changes of mobile nodes, decision deadline of the behavior change, and existence of a fixed source on information floating. We theoretically analyze the probability that a node cannot receive information and also derive the size of each transmittable area so that this probability is close to desired values.

  • Realization of SR-Equivalents Using Generalized Shift Registers for Secure Scan Design

    Hideo FUJIWARA  Katsuya FUJIWARA  

     
    LETTER-Dependable Computing

      Pubricized:
    2016/05/16
      Vol:
    E99-D No:8
      Page(s):
    2182-2185

    We reported a secure scan design approach using shift register equivalents (SR-equivalents, for short) that are functionally equivalent but not structurally equivalent to shift registers [10 and also introduced generalized shift registers (GSRs, for short) to apply them to secure scan design [11]-[13]. In this paper, we combine both concepts of SR-equivalents and GSRs and consider the synthesis problem of SR-equivalent GSRs, i.e., how to modify a given GSR to an SR-equivalent GSR. We also consider the enumeration problem of SR-equivalent GFSRs, i.e., the cardinality of the class of SR-equivalent GSRs to clarify the security level of the secure scan architecture.

  • Estimation of the Acoustic Time Delay of Arrival by Adaptive Eigenvalue Decomposition with a Proportionate Step-Size Control and Direct-Path Constraint

    Seokjin LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:8
      Page(s):
    1622-1627

    Estimation of the time delay of arrival (TDOA) problem is important to acoustic source localization. The TDOA estimation problem is defined as finding the relative delay between several microphone signals for the direct sound. To estimate TDOA, the generalized cross-correlation (GCC) method is the most frequently used, but it has a disadvantage in terms of reverberant environments. In order to overcome this problem, the adaptive eigenvalue decomposition (AED) method has been developed, which estimates the room transfer function and finds the direct-path delay. However, the algorithm does not take into account the fact that the room transfer function is a sparse channel, and so sometimes the estimated transfer function is too dense, resulting in failure to exact direct-path and delay. In this paper, an enhanced AED algorithm that makes use of a proportionate step-size control and a direct-path constraint is proposed instead of a constant step size and the L2-norm constraint. The simulation results show that the proposed algorithm has enhanced performance as compared to both the conventional AED method and the phase-transform (PHAT) algorithm.

  • Construction of Z-Periodic Complementary Sequence Sets over the 8-QAM+ Constellation

    Xiaoyu CHEN  Deming KONG  Chengqian XU  Kai LIU  

     
    LETTER-Coding Theory

      Vol:
    E99-A No:8
      Page(s):
    1635-1638

    Based on a ternary perfect sequence and a binary orthogonal matrix, the Z-periodic complementary sequence (ZPCS) sets over the 8-QAM+ constellation are constructed. The resultant sequences can be used in multi-carriers code division multiple access (MC-CDMA) systems to remove interference and increase the transmission rate. The proposed construction provides flexible choice for parameters so as to meet different requirements in the application. A construction of shift sequence sets is proposed and the number of 8-QAM ZPCS sets is extended by changing the parameters of shift sequences. As a result, more users can be accommodated in the system.

  • Design and Deployment of Enhanced VNode Infrastructure — Deeply Programmable Network Virtualization Open Access

    Kazuhisa YAMADA  Akihiro NAKAO  Yasusi KANADA  Yoshinori SAIDA  Koichiro AMEMIYA  Yuki MINAMI  

     
    INVITED PAPER-Network

      Vol:
    E99-B No:8
      Page(s):
    1629-1637

    We introduce the design and deployment of the latest version of the VNode infrastructure, VNode-i. We present new extended VNode-i functions that offer high performance and provide convenient deep programmability to network developers. We extend resource abstraction to the transport network and achieve highly precise slice measurement for resource elasticity. We achieve precise resource isolation for VNode-i. We achieve coexistence of high performance and programmability. We also enhance AGW functions. In addition, we extend network virtualization from the core network to edge networks and terminals. In evaluation experiments, we deploy the enhanced VNode-i on the JGN-X testbed and evaluate its performance. We successfully create international federation slices across VNode-i, GENI, and Fed4FIRE. We also present experimental results on video streaming on a federated slice across VNode-i and GENI. Testbed experiments confirm the practicality of the enhanced VNode-i.

  • Modelling Load Balancing Mechanisms in Self-Optimising 4G Mobile Networks with Elastic and Adaptive Traffic

    Mariusz GŁĄBOWSKI  Sławomir HANCZEWSKI  Maciej STASIAK  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:8
      Page(s):
    1718-1726

    This article describes an approximate model of a group of cells in the wireless 4G network with implemented load balancing mechanism. An appropriately modified model of Erlang's Ideal Grading is used to model this group of cells. The model makes it possible to take into account limited availability of resources of individual cells to multi-rate elastic and adaptive traffic streams generated by Erlang and Engset sources. The developed solution allows the basic traffic characteristics in the considered system to be determined, i.e. the occupancy distribution and the blocking probability. Because of the approximate nature of the proposed model, the results obtained based on the model were compared with the results of a digital simulation. The present study validates the adopted assumptions of the proposed model.

  • Achieving High Data Utility K-Anonymization Using Similarity-Based Clustering Model

    Mohammad Rasool SARRAFI AGHDAM  Noboru SONEHARA  

     
    PAPER

      Pubricized:
    2016/05/31
      Vol:
    E99-D No:8
      Page(s):
    2069-2078

    In data sharing privacy has become one of the main concerns particularly when sharing datasets involving individuals contain private sensitive information. A model that is widely used to protect the privacy of individuals in publishing micro-data is k-anonymity. It reduces the linking confidence between private sensitive information and specific individual by generalizing the identifier attributes of each individual into at least k-1 others in dataset. K-anonymity can also be defined as clustering with constrain of minimum k tuples in each group. However, the accuracy of the data in k-anonymous dataset decreases due to huge information loss through generalization and suppression. Also most of the current approaches are designed for numerical continuous attributes and for categorical attributes they do not perform efficiently and depend on attributes hierarchical taxonomies, which often do not exist. In this paper we propose a new model for k-anonymization, which is called Similarity-Based Clustering (SBC). It is based on clustering and it measures similarity and calculates distances between tuples containing numerical and categorical attributes without hierarchical taxonomies. Based on this model a bottom up greedy algorithm is proposed. Our extensive study on two real datasets shows that the proposed algorithm in comparison with existing well-known algorithms offers much higher data utility and reduces the information loss significantly. Data utility is maintained above 80% in a wide range of k values.

  • A 9.35-ENOB, 14.8 fJ/conv.-step Fully-Passive Noise-Shaping SAR ADC

    Zhijie CHEN  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:8
      Page(s):
    963-973

    This paper proposes an opamp-free solution to implement single-phase-clock controlled noise shaping in a SAR ADC. Unlike a conventional noise shaping SAR ADC, the proposal realizes noise shaping by charge redistribution, which is a passive technique. The passive implementation has high power efficiency. Meanwhile, since the proposal maintains the basic architecture and operation method of a traditional SAR ADC, it retains all the advantages of a SAR ADC. Furthermore, noise shaping helps to improve the performance of SAR ADC and relaxes its non-ideal effects. Designed in a 65-nm CMOS technology, the prototype realizes 58-dB SNDR based on an 8-bit C-DAC at 50-MS/s sampling frequency. It consumes 120.7-µW power from a 0.8-V supply and achieves a FoM of 14.8-fJ per conversion step.

  • Hough Transform-Based Clock Skew Measurement by Dynamically Locating the Region of Offset Majority

    Komang OKA SAPUTRA  Wei-Chung TENG  Takaaki NARA  

     
    PAPER-Information Network

      Pubricized:
    2016/05/19
      Vol:
    E99-D No:8
      Page(s):
    2100-2108

    A network-based remote host clock skew measurement involves collecting the offsets, the differences between sending and receiving times, of packets from the host within a period of time. Although the variant and immeasurable delay in each packet prevents the measurer from getting the real clock offset, the local minimum delays and the majority of delays delineate the clock offset shifts, and are used by existing approaches to estimate the skew. However, events during skew measurement like time synchronization and rerouting caused by switching network interface or base transceiver station may break the trend into multi-segment patterns. Although the skew in each segment is theoretically of the same value, the skew derived from the whole offset-set usually differs with an error of unpredictable scale. In this work, a method called dynamic region of offset majority locating (DROML) is developed to detect multi-segment cases, and to precisely estimate the skew. DROML is designed to work in real-time, and it uses a modified version of the HT-based method [8] both to measure the skew of one segment and to detect the break between adjacent segments. In the evaluation section, the modified HT-based method is compared with the original method and with a linear programming algorithm (LPA) on accumulated-time and short-term measurement. The fluctuation of the modified method in the short-term experiment is 0.6 ppm (parts per million), which is obviously less than the 1.23 ppm and 1.45 ppm from the other two methods. DROML, when estimating a four-segment case, is able to output a skew of only 0.22 ppm error, compared with the result of the normal case.

  • Multi-Cell Structure Backscatter Based Wireless-Powered Communication Network (WPCN)

    Shin Hyuk CHOI  Dong In KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:8
      Page(s):
    1687-1696

    In this paper, we propose a multi-cell structure backscatter based wireless-powered communication network (WPCN) where a number of backscatter cells are locally separated, each containing a subset of users around a carrier emitter. The multi-cell structure backscatter based WPCN can be implemented in two ways, namely time-division multiplexing (TDM) and frequency-division multiplexing (FDM). Here users harvest energy from the carrier signal transmitted by the carrier emitter, and then transmit their own information in a passive way via the reflection of the carrier signal using frequency-shift keying modulation. We characterize the energy-free condition and the signal-to-noise ratio (SNR) outage zone in a backscatter based WPCN. Also, a backscatter based harvest-then-transmit protocol is adopted to maximize the sum-throughput of all users by optimally allocating time for energy harvesting and information transmission. Numerical results demonstrate that the backscatter based WPCN ensures an increased long-range coverage and a diminished SNR outage zone compared to conventional radio based WPCNs. Also, comparing the two types of multi-cell structure backscatter based WPCN, TDM within each backscatter cell and FDM across backscatter cells versus FDM within each backscatter cell and TDM across backscatter cells, numerical results confirm that which one yields a better performance.

  • Linear Complexity of New Generalized Cyclotomic Sequences of Order Two with Odd Length

    Yu-qian ZHOU  Fei GAO  Jie ZHANG  Qian-yan WEN  Zu-ling CHANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E99-A No:8
      Page(s):
    1639-1644

    Based on the generalized cyclotomy of order two with respect to n=p1e1+1p2e2+1…ptet+1, where p1, p2, …,pt are pairwise distinct odd primes and e1, e2,…, et are non-negative integers satisfying gcd (piei (pi-1), pjej (pj-1)) = 2 for all i ≠ j, this paper constructs a new family of generalized cyclotomic sequences of order two with length n and investigates their linear complexity. In the view of cascade theory, this paper obtains the linear complexity of a representative sequence.

  • Identifying Important Tweets by Considering the Potentiality of Neurons

    Ryozo KITAJIMA  Ryotaro KAMIMURA  Osamu UCHIDA  Fujio TORIUMI  

     
    LETTER

      Vol:
    E99-A No:8
      Page(s):
    1555-1559

    The purpose of this paper is to show that a new type of information-theoretic learning method called “potential learning” can be used to detect and extract important tweets among a great number of redundant ones. In the experiment, we used a dataset of 10,000 tweets, among which there existed only a few important ones. The experimental results showed that the new method improved overall classification accuracy by correctly identifying the important tweets.

  • Link-Adaptable Vector-Perturbation ZFBF Precoder for Multi-Point 3D-Beamformers Open Access

    Masaaki FUJII  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:8
      Page(s):
    1648-1654

    A link adaptation scheme is devised for vector-perturbation (VP) zero-forcing beamforming (ZFBF) MIMO precoding and a link-adaptable VP-ZFBF precoder is applied to multi-point three-dimensional (3D) beamformers to be used in mmWave-band wireless access systems. Channel coding schemes used in current systems, e.g., turbo codes, possess systematic code structures. The VP gain can thus be predicted by searching for perturbation vectors for the symbol vectors mapped from information bits. On the basis of this principle, we constructed an efficient iterative modulation-and-coding-set (MCS) selection procedure for VP-ZFBF precoding. Simulation results demonstrate that our proposed scheme suitably passed on the VP gain to the selection of an appropriate higher-rate MCS index and thus achieved high throughputs by incorporating with multi-point 3D-beamformers.

1201-1220hit(5900hit)